BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34200691)

  • 21. Impact of Different Binders on the Roughness, Adhesion Strength, and Other Properties of Mortars with Expanded Cork.
    Barnat-Hunek D; Widomski MK; Szafraniec M; Łagód G
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29494525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete.
    Shang HS; Cao WQ; Wang B
    ScientificWorldJournal; 2014; 2014():923032. PubMed ID: 24895671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Fiber and Surface Treatment on Airport Pavement Concrete against Freeze-Thawing and Salt Freezing.
    Xu L; Lai Y; Ma D; Wang J; Li M; Li L; Gao Z; Liu Y; He P; Zhang Y
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental Investigation on the Freeze-Thaw Resistance of Steel Fibers Reinforced Rubber Concrete.
    Luo T; Zhang C; Sun C; Zheng X; Ji Y; Yuan X
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32164351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Phosphorus Slag on Physical and Mechanical Properties of Cement Mortars.
    Pang M; Sun Z; Chen M; Lang J; Dong J; Tian X; Sun J
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Influence of Ambient Temperature on High Performance Concrete Properties.
    Kaleta-Jurowska A; Jurowski K
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33080964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioremediation of mortar made from Ordinary Portland Cement degraded by
    Ngari RW; Thiong'o JK; Wachira JM; Muriithi G; Mutitu DK
    Heliyon; 2021 Jun; 7(6):e07215. PubMed ID: 34159272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of Lightweight Alkali Activated Mortars Using Mineral Wools.
    Alzaza A; Mastali M; Kinnunen P; Korat L; Abdollahnejad Z; Ducman V; Illikainen M
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31137711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Study on Freezing and Thawing Cycles of Shrinkage-Compensating Concrete with Double Expansive Agents.
    Guo J; Guo T; Zhang S; Lu Y
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32326462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on the Frost Resistance of Concrete Modified with Steel Balls Containing Phase Change Material (PCM).
    Yuan X; Wang B; Chen P; Luo T
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recycling of a Concrete Pavement after over 80 Years in Service.
    Rudnicki T; Jurczak R
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32423136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the Size and Type of Pores on Brick Resistance to Freeze-Thaw Cycles.
    Netinger Grubeša I; Vračević M; Ducman V; Marković B; Szenti I; Kukovecz Á
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32842686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seasonality of cavitation and frost fatigue in Acer mono Maxim.
    Zhang W; Feng F; Tyree MT
    Plant Cell Environ; 2018 Jun; 41(6):1278-1286. PubMed ID: 29220549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performances of Cement Mortar Incorporating Superabsorbent Polymer (SAP) Using Different Dosing Methods.
    Tan Y; Chen H; Wang Z; Xue C; He R
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31108848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface Modification of Lightweight Mortars by Nanopolymers to Improve Their Water-Repellency and Durability.
    Szafraniec M; Barnat-Hunek D; Grzegorczyk-Frańczak M; Trochonowicz M
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32192021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physical Properties and Durability of Lime-Cement Mortars Prepared with Water Containing Micro-Nano Bubbles of Various Gases.
    Grzegorczyk-Frańczak M; Barnat-Hunek D; Andrzejuk W; Zaburko J; Zalewska M; Łagód G
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Data-Based Statistical Analysis of Laboratory Experiments on Concrete Frost Damage and Its Implications on Service Life Prediction.
    Gong F; Zhi D; Jia J; Wang Z; Ning Y; Zhang B; Ueda T
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of the Internal Humidity of Concrete on Frost Resistance and Air Void Structure under Different Low Temperature Conditions.
    Ge X; Ke M; Liu W; Wang H; Lu C; Mei G; Yang H
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frost Damage in Tight Sandstone: Experimental Evaluation and Interpretation of Damage Mechanisms.
    Ding S; Jia H; Zi F; Dong Y; Yao Y
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frost Resistance Number to Assess Freeze and Thaw Resistance of Non-Autoclaved Aerated Concretes Containing Ground Granulated Blast-Furnace Slag and Micro-Silica.
    Sharafutdinov E; Shon CS; Zhang D; Chung CW; Kim J; Bagitova S
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.