These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 34200775)

  • 1. Comparative Genomics of Eight
    Alouane T; Rimbert H; Bormann J; González-Montiel GA; Loesgen S; Schäfer W; Freitag M; Langin T; Bonhomme L
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34200775
    [No Abstract]   [Full Text] [Related]  

  • 2.
    Rocher F; Alouane T; Philippe G; Martin ML; Label P; Langin T; Bonhomme L
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163834
    [No Abstract]   [Full Text] [Related]  

  • 3. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum-Wheat Interactions.
    Lu S; Edwards MC
    Phytopathology; 2016 Feb; 106(2):166-76. PubMed ID: 26524547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Landscape of genomic diversity and host adaptation in Fusarium graminearum.
    Laurent B; Moinard M; Spataro C; Ponts N; Barreau C; Foulongne-Oriol M
    BMC Genomics; 2017 Feb; 18(1):203. PubMed ID: 28231761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen.
    Kelly AC; Ward TJ
    PLoS One; 2018; 13(3):e0194616. PubMed ID: 29584736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-genome comparison of the Quorn fungus Fusarium venenatum and the closely related plant infecting pathogen Fusarium graminearum.
    King R; Brown NA; Urban M; Hammond-Kosack KE
    BMC Genomics; 2018 Apr; 19(1):269. PubMed ID: 29673315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Phylogenetic Relationships, Trichothecene Chemotype Diversity and Aggressiveness of Strains in a Global Collection of
    Amarasinghe C; Sharanowski B; Fernando WGD
    Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31083494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis.
    Brown NA; Antoniw J; Hammond-Kosack KE
    PLoS One; 2012; 7(4):e33731. PubMed ID: 22493673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field pathogenomics of
    Fall LA; Salazar MM; Drnevich J; Holmes JR; Tseng MC; Kolb FL; Mideros SX
    Mycologia; 2019; 111(4):563-573. PubMed ID: 31112486
    [No Abstract]   [Full Text] [Related]  

  • 10. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes.
    Chetouhi C; Bonhomme L; Lasserre-Zuber P; Cambon F; Pelletier S; Renou JP; Langin T
    Funct Integr Genomics; 2016 Mar; 16(2):183-201. PubMed ID: 26797431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole genome sequencing and comparative genomics of closely related Fusarium Head Blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum.
    Walkowiak S; Rowland O; Rodrigue N; Subramaniam R
    BMC Genomics; 2016 Dec; 17(1):1014. PubMed ID: 27938326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum.
    King R; Urban M; Hammond-Kosack MC; Hassani-Pak K; Hammond-Kosack KE
    BMC Genomics; 2015 Jul; 16(1):544. PubMed ID: 26198851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved dissection of the molecular crosstalk driving Fusarium head blight in wheat provides new insights into host susceptibility determinism.
    Fabre F; Vignassa M; Urbach S; Langin T; Bonhomme L
    Plant Cell Environ; 2019 Jul; 42(7):2291-2308. PubMed ID: 30866080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of single nucleotide polymorphic sites in candidate genes with aggressiveness and deoxynivalenol production in Fusarium graminearum causing wheat head blight.
    Talas F; Würschum T; Reif JC; Parzies HK; Miedaner T
    BMC Genet; 2012 Mar; 13():14. PubMed ID: 22409447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTL mapping in Fusarium graminearum identified an allele of FgVe1 involved in reduced aggressiveness.
    Laurent B; Moinard M; Spataro C; Chéreau S; Zehraoui E; Blanc R; Lasserre P; Ponts N; Foulongne-Oriol M
    Fungal Genet Biol; 2021 Aug; 153():103566. PubMed ID: 33991664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Within-field variation of Fusarium graminearum isolates for aggressiveness and deoxynivalenol production in wheat head blight.
    Talas F; Kalih R; Miedaner T
    Phytopathology; 2012 Jan; 102(1):128-34. PubMed ID: 22165985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unbalanced Roles of Fungal Aggressiveness and Host Cultivars in the Establishment of the Fusarium Head Blight in Bread Wheat.
    Fabre F; Bormann J; Urbach S; Roche S; Langin T; Bonhomme L
    Front Microbiol; 2019; 10():2857. PubMed ID: 31921038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Quantitative Wheat Resistance on the Aggressiveness of
    Krone MJ; Dong Y; Mideros SX
    Phytopathology; 2024 Jul; 114(7):1577-1586. PubMed ID: 38669176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential transcriptomic responses to Fusarium graminearum infection in two barley quantitative trait loci associated with Fusarium head blight resistance.
    Huang Y; Li L; Smith KP; Muehlbauer GJ
    BMC Genomics; 2016 May; 17():387. PubMed ID: 27206761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests.
    Kuhnem PR; Del Ponte EM; Dong Y; Bergstrom GC
    Phytopathology; 2015 Apr; 105(4):441-8. PubMed ID: 25338173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.