BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1152 related articles for article (PubMed ID: 34200820)

  • 1. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy.
    Nenkov M; Ma Y; Gaßler N; Chen Y
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34200820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment.
    Hanus M; Parada-Venegas D; Landskron G; Wielandt AM; Hurtado C; Alvarez K; Hermoso MA; López-Köstner F; De la Fuente M
    Front Immunol; 2021; 12():612826. PubMed ID: 33841394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gut Microbiota Manipulation as a Tool for Colorectal Cancer Management: Recent Advances in Its Use for Therapeutic Purposes.
    Perillo F; Amoroso C; Strati F; Giuffrè MR; Díaz-Basabe A; Lattanzi G; Facciotti F
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic and Therapeutic Significance.
    Mola S; Pandolfo C; Sica A; Porta C
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32962159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells.
    Pan T; Liu J; Xu S; Yu Q; Wang H; Sun H; Wu J; Zhu Y; Zhou J; Zhu Y
    Theranostics; 2020; 10(2):516-536. PubMed ID: 31903135
    [No Abstract]   [Full Text] [Related]  

  • 6. The Therapeutic Potential of Tackling Tumor-Induced Dendritic Cell Dysfunction in Colorectal Cancer.
    Subtil B; Cambi A; Tauriello DVF; de Vries IJM
    Front Immunol; 2021; 12():724883. PubMed ID: 34691029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosstalk between gut microbiota and metastasis in colorectal cancer: implication of neutrophil extracellular traps.
    Wu J; Dong W; Pan Y; Wang J; Wu M; Yu Y
    Front Immunol; 2023; 14():1296783. PubMed ID: 37936694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic pathways regulating colorectal cancer initiation and progression.
    La Vecchia S; Sebastián C
    Semin Cell Dev Biol; 2020 Feb; 98():63-70. PubMed ID: 31129171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer.
    Hon KW; Zainal Abidin SA; Othman I; Naidu R
    Front Pharmacol; 2021; 12():768861. PubMed ID: 34887764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy.
    Wang G; Yu Y; Wang YZ; Wang JJ; Guan R; Sun Y; Shi F; Gao J; Fu XL
    J Cell Physiol; 2019 Aug; 234(10):17023-17049. PubMed ID: 30888065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorectal Cancer and Metabolism.
    Brown RE; Short SP; Williams CS
    Curr Colorectal Cancer Rep; 2018 Dec; 14(6):226-241. PubMed ID: 31406492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tumor microenvironment of colorectal cancer metastases: opportunities in cancer immunotherapy.
    Kamal Y; Schmit SL; Frost HR; Amos CI
    Immunotherapy; 2020 Oct; 12(14):1083-1100. PubMed ID: 32787587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From Mechanism to Therapy and Prognosis.
    Wang H; Tian T; Zhang J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Gut Microbiota in the Development and Treatment of Colorectal Cancer.
    Lin C; Cai X; Zhang J; Wang W; Sheng Q; Hua H; Zhou X
    Digestion; 2019; 100(1):72-78. PubMed ID: 30332668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association between Metabolic Reprogramming and Immune Regulation in Digestive Tract Tumors.
    Liu J; Wang T; Zhang W; Huang Y; Wang X; Li Q
    Oncol Res Treat; 2024; 47(6):273-286. PubMed ID: 38636467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorectal cancer: Metabolic interactions reshape the tumor microenvironment.
    Chen J; Zhu H; Yin Y; Jia S; Luo X
    Biochim Biophys Acta Rev Cancer; 2022 Sep; 1877(5):188797. PubMed ID: 36100193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the Tumor Microenvironment by Microbiota-Derived Short-Chain Fatty Acids: Impact in Colorectal Cancer Therapy.
    Gomes S; Rodrigues AC; Pazienza V; Preto A
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer.
    Li R; Zhou R; Wang H; Li W; Pan M; Yao X; Zhan W; Yang S; Xu L; Ding Y; Zhao L
    Cell Death Differ; 2019 Nov; 26(11):2447-2463. PubMed ID: 30850734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbe-based management for colorectal cancer.
    Gao ZY; Cui Z; Yan YQ; Ning LJ; Wang ZH; Hong J
    Chin Med J (Engl); 2021 Dec; 134(24):2922-2930. PubMed ID: 34855639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive analysis of the relationship between ubiquitin-specific protease 21 (USP21) and prognosis, tumor microenvironment infiltration, and therapy response in colorectal cancer.
    Nie H; Yu Y; Wang F; Huang X; Wang H; Wang J; Tao M; Ning Y; Zhou J; Zhao Q; Xu F; Fang J
    Cancer Immunol Immunother; 2024 Jun; 73(8):156. PubMed ID: 38834869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.