These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34201216)

  • 21. Programmable Microfluidics Enabled by 3D Printed Bionic Janus Porous Matrics for Microfluidic Logic Chips.
    Xie M; Zhan Z; Zhang C; Xu W; Zhang C; Chen Y; Dong Z; Wang Z
    Small; 2023 Aug; 19(34):e2300047. PubMed ID: 37127869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-efficient fabrication method for 3D-printed microfluidic devices.
    Jin Y; Xiong P; Xu T; Wang J
    Sci Rep; 2022 Jan; 12(1):1233. PubMed ID: 35075184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advancing 3D printed microfluidics with computational methods for sweat analysis.
    Ece E; Ölmez K; Hacıosmanoğlu N; Atabay M; Inci F
    Mikrochim Acta; 2024 Feb; 191(3):162. PubMed ID: 38411762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The manufacturing of 3D-printed microfluidic chips to analyse the effect upon particle size during the synthesis of lipid nanoparticles.
    Weaver E; Mathew E; Caldwell J; Hooker A; Uddin S; Lamprou DA
    J Pharm Pharmacol; 2023 Feb; 75(2):245-252. PubMed ID: 36453867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication.
    Morgan AJ; Hidalgo San Jose L; Jamieson WD; Wymant JM; Song B; Stephens P; Barrow DA; Castell OK
    PLoS One; 2016; 11(4):e0152023. PubMed ID: 27050661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving the Resolution of 3D-Printed Molds for Microfluidics by Iterative Casting-Shrinkage Cycles.
    Sun M; Xie Y; Zhu J; Li J; Eijkel JC
    Anal Chem; 2017 Feb; 89(4):2227-2231. PubMed ID: 28192927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Printing Solutions for Microfluidic Chip-To-World Connections.
    van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid Three Dimensionally Printed Paper-Based Microfluidic Platform for Investigating a Cell's Apoptosis and Intracellular Cross-Talk.
    Liu P; Li B; Fu L; Huang Y; Man M; Qi J; Sun X; Kang Q; Shen D; Chen L
    ACS Sens; 2020 Feb; 5(2):464-473. PubMed ID: 32013403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Novel Room-Temperature Bonding Method Based on Electrohydrodynamic Printing.
    Wu W; Yang X; Liu R; Yin Z; Wang DF; Zou H; Hu W; Li L
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1672-1677. PubMed ID: 33404432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer.
    van der Linden PJEM; Popov AM; Pontoni D
    Lab Chip; 2020 Nov; 20(22):4128-4140. PubMed ID: 33057528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Empowering microfluidics by micro-3D printing and solution-based mineral coating.
    Li H; Raza A; Ge Q; Lu JY; Zhang T
    Soft Matter; 2020 Jul; 16(29):6841-6849. PubMed ID: 32638816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-Printing of Functionally Graded Porous Materials Using On-Demand Reconfigurable Microfluidics.
    Costantini M; Jaroszewicz J; Kozoń Ł; Szlązak K; Święszkowski W; Garstecki P; Stubenrauch C; Barbetta A; Guzowski J
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7620-7625. PubMed ID: 30908850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism.
    Zhang Y; Tseng TM; Schlichtmann U
    Sci Rep; 2021 Sep; 11(1):19189. PubMed ID: 34584118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Materials Testing for the Development of Biocompatible Devices through Vat-Polymerization 3D Printing.
    González G; Baruffaldi D; Martinengo C; Angelini A; Chiappone A; Roppolo I; Pirri CF; Frascella F
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32916902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D Printed Integrated Multi-Layer Microfluidic Chips for Ultra-High Volumetric Throughput Nanoliposome Preparation.
    Shan H; Lin Q; Wang D; Sun X; Quan B; Chen X; Chen Z
    Front Bioeng Biotechnol; 2021; 9():773705. PubMed ID: 34708031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.