These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34201216)

  • 41. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrophilic modification of SLA 3D printed droplet generators by photochemical grafting.
    Bacha TW; Manuguerra DC; Marano RA; Stanzione JF
    RSC Adv; 2021 Jun; 11(35):21745-21753. PubMed ID: 35478820
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization and Evaluation of 3D-Printed Connectors for Microfluidics.
    Xu Q; Lo JCC; Lee SR
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442496
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Solution to the Clearance Problem of Sacrificial Material in 3D Printing of Microfluidic Devices.
    Hornik T; Kempa J; Catterlin J; Kartalov E
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677077
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.
    Hamad EM; Bilatto SE; Adly NY; Correa DS; Wolfrum B; Schöning MJ; Offenhäusser A; Yakushenko A
    Lab Chip; 2016 Jan; 16(1):70-4. PubMed ID: 26627046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Handheld and 'Turnkey' 3D printed paper-microfluidic viscometer with on-board microcontroller for smartphone based biosensing applications.
    Puneeth SB; Goel S
    Anal Chim Acta; 2021 Apr; 1153():338303. PubMed ID: 33714437
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanofiber self-consistent additive manufacturing process for 3D microfluidics.
    Qiu B; Chen X; Xu F; Wu D; Zhou Y; Tu W; Jin H; He G; Chen S; Sun D
    Microsyst Nanoeng; 2022; 8():102. PubMed ID: 36119377
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design.
    Balakrishnan HK; Badar F; Doeven EH; Novak JI; Merenda A; Dumée LF; Loy J; Guijt RM
    Anal Chem; 2021 Jan; 93(1):350-366. PubMed ID: 33263392
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells.
    Cole RH; Tang SY; Siltanen CA; Shahi P; Zhang JQ; Poust S; Gartner ZJ; Abate AR
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8728-8733. PubMed ID: 28760972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidic chips via commercial 3D-printers.
    Yin P; Zhao L; Chen Z; Jiao Z; Shi H; Hu B; Yuan S; Tian J
    Soft Matter; 2020 Mar; 16(12):3096-3105. PubMed ID: 32149313
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis.
    Dang BV; Hassanzadeh-Barforoushi A; Syed MS; Yang D; Kim SJ; Taylor RA; Liu GJ; Liu G; Barber T
    ACS Sens; 2019 Aug; 4(8):2181-2189. PubMed ID: 31321976
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt.
    Gelber MK; Bhargava R
    Lab Chip; 2015 Apr; 15(7):1736-41. PubMed ID: 25671493
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wax screen-printable ink for massive fabrication of negligible-to-nil cost fabric-based microfluidic (bio)sensing devices for colorimetric analysis of sweat.
    Tzianni EI; Sakkas VA; Prodromidis MI
    Talanta; 2024 Mar; 269():125475. PubMed ID: 38039670
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Versatile and Low-Cost Fabrication of Modular Lock-and-Key Microfluidics for Integrated Connector Mixer Using a Stereolithography 3D Printing.
    Anshori I; Lukito V; Adhawiyah R; Putri D; Harimurti S; Rajab TLE; Pradana A; Akbar M; Syamsunarno MRAA; Handayani M; Purwidyantri A; Prabowo BA
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014119
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of Polymer Microfluidics: An Overview.
    Juang YJ; Chiu YJ
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631909
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes.
    Li Y; Bøtker J; Rantanen J; Yang M; Bohr A
    Int J Pharm; 2020 Jun; 583():119388. PubMed ID: 32376446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrogels: The Next Generation Body Materials for Microfluidic Chips?
    Nie J; Fu J; He Y
    Small; 2020 Nov; 16(46):e2003797. PubMed ID: 33103353
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D printed versus conventionally cured provisional crown and bridge dental materials.
    Tahayeri A; Morgan M; Fugolin AP; Bompolaki D; Athirasala A; Pfeifer CS; Ferracane JL; Bertassoni LE
    Dent Mater; 2018 Feb; 34(2):192-200. PubMed ID: 29110921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.