These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 34201261)

  • 1. Oxidative Stress as A Mechanism for Functional Alterations in Cardiac Hypertrophy and Heart Failure.
    Shah AK; Bhullar SK; Elimban V; Dhalla NS
    Antioxidants (Basel); 2021 Jun; 10(6):. PubMed ID: 34201261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Oxidative Stress in Cardiac Dysfunction and Subcellular Defects Due to Ischemia-Reperfusion Injury.
    Dhalla NS; Shah AK; Adameova A; Bartekova M
    Biomedicines; 2022 Jun; 10(7):. PubMed ID: 35884777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of Oxidative Stress in the Development of Subcellular Defects and Heart Disease.
    Dhalla NS; Elimban V; Bartekova M; Adameova A
    Biomedicines; 2022 Feb; 10(2):. PubMed ID: 35203602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular remodeling as a viable target for the treatment of congestive heart failure.
    Dhalla NS; Dent MR; Tappia PS; Sethi R; Barta J; Goyal RK
    J Cardiovasc Pharmacol Ther; 2006 Mar; 11(1):31-45. PubMed ID: 16703218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of subcellular remodeling in heart failure due to diabetes.
    Dhalla NS; Takeda N; Rodriguez-Leyva D; Elimban V
    Heart Fail Rev; 2014 Jan; 19(1):87-99. PubMed ID: 23436108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future scope and challenges for congestive heart failure: moving toward development of pharmacotherapy.
    Dhalla NS; Bhullar SK; Shah AK
    Can J Physiol Pharmacol; 2022 Sep; 100(9):834-847. PubMed ID: 35704943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for the transition from physiological to pathological cardiac hypertrophy.
    Oldfield CJ; Duhamel TA; Dhalla NS
    Can J Physiol Pharmacol; 2020 Feb; 98(2):74-84. PubMed ID: 31815523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca
    Zhao GJ; Zhao CL; Ouyang S; Deng KQ; Zhu L; Montezano AC; Zhang C; Hu F; Zhu XY; Tian S; Liu X; Ji YX; Zhang P; Zhang XJ; She ZG; Touyz RM; Li H
    Hypertension; 2020 Sep; 76(3):827-838. PubMed ID: 32683902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac remodeling and subcellular defects in heart failure due to myocardial infarction and aging.
    Dhalla NS; Rangi S; Babick AP; Zieroth S; Elimban V
    Heart Fail Rev; 2012 Sep; 17(4-5):671-81. PubMed ID: 21850540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure.
    Dhalla NS; Saini-Chohan HK; Rodriguez-Leyva D; Elimban V; Dent MR; Tappia PS
    Cardiovasc Res; 2009 Feb; 81(3):429-38. PubMed ID: 18852252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease.
    Dhalla NS; Saini HK; Tappia PS; Sethi R; Mengi SA; Gupta SK
    J Cardiovasc Med (Hagerstown); 2007 Apr; 8(4):238-50. PubMed ID: 17413299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nuclear receptor RORα protects against angiotensin II-induced cardiac hypertrophy and heart failure.
    Beak JY; Kang HS; Huang W; Myers PH; Bowles DE; Jetten AM; Jensen BC
    Am J Physiol Heart Circ Physiol; 2019 Jan; 316(1):H186-H200. PubMed ID: 30387679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diastolic dysfunction in pressure-overload hypertrophy and its modification by angiotensin II: current concepts.
    Lorell BH
    Basic Res Cardiol; 1992; 87 Suppl 2():163-72. PubMed ID: 1338563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling.
    Schirone L; Forte M; Palmerio S; Yee D; Nocella C; Angelini F; Pagano F; Schiavon S; Bordin A; Carrizzo A; Vecchione C; Valenti V; Chimenti I; De Falco E; Sciarretta S; Frati G
    Oxid Med Cell Longev; 2017; 2017():3920195. PubMed ID: 28751931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress and cardiac hypertrophy: a review.
    Maulik SK; Kumar S
    Toxicol Mech Methods; 2012 Jun; 22(5):359-66. PubMed ID: 22394344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of NOX2 (gp91phox) prevents oxidative stress and progression to advanced heart failure.
    Parajuli N; Patel VB; Wang W; Basu R; Oudit GY
    Clin Sci (Lond); 2014 Sep; 127(5):331-40. PubMed ID: 24624929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure.
    Murdoch CE; Zhang M; Cave AC; Shah AM
    Cardiovasc Res; 2006 Jul; 71(2):208-15. PubMed ID: 16631149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial Forkhead Box Transcription Factor P1 Regulates Pathological Cardiac Remodeling Through Transforming Growth Factor-β1-Endothelin-1 Signal Pathway.
    Liu J; Zhuang T; Pi J; Chen X; Zhang Q; Li Y; Wang H; Shen Y; Tomlinson B; Chan P; Yu Z; Cheng Y; Zheng X; Reilly M; Morrisey E; Zhang L; Liu Z; Zhang Y
    Circulation; 2019 Aug; 140(8):665-680. PubMed ID: 31177814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of oxidative stress in transition of hypertrophy to heart failure.
    Dhalla AK; Hill MF; Singal PK
    J Am Coll Cardiol; 1996 Aug; 28(2):506-14. PubMed ID: 8800132
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 23.