These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 3420137)
1. Uncoupling of oxidative phosphorylation induced by FCCP oleic acid and chloroform in rat liver mitochondria. Luvisetto S; Pietrobon D; Azzone GF Prog Clin Biol Res; 1988; 273():395-400. PubMed ID: 3420137 [No Abstract] [Full Text] [Related]
2. Uncoupling of oxidative phosphorylation. 1. Protonophoric effects account only partially for uncoupling. Luvisetto S; Pietrobon D; Azzone GF Biochemistry; 1987 Nov; 26(23):7332-8. PubMed ID: 2827753 [TBL] [Abstract][Full Text] [Related]
3. Uncoupling of oxidative phosphorylation. 2. Alternative mechanisms: intrinsic uncoupling or decoupling? Pietrobon D; Luvisetto S; Azzone GF Biochemistry; 1987 Nov; 26(23):7339-47. PubMed ID: 2962636 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of action of agents which uncouple oxidative phosphorylation: direct correlation between proton-carrying and respiratory-releasing properties using rat liver mitochondria. Cunarro J; Weiner MW Biochim Biophys Acta; 1975 May; 387(2):234-40. PubMed ID: 1125290 [TBL] [Abstract][Full Text] [Related]
5. The energized state of rat liver mitochondria. ATP equivalence, uncoupler sensitivity, and decay kinetics. Lemasters JJ; Hackenbrock CR J Biol Chem; 1980 Jun; 255(12):5674-80. PubMed ID: 7380830 [No Abstract] [Full Text] [Related]
6. Restoration of membrane potential in mitochondria deenergized with carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Toninello A; Siliprandi N Biochim Biophys Acta; 1982 Nov; 682(2):289-92. PubMed ID: 7171582 [TBL] [Abstract][Full Text] [Related]
7. [Coupling effect of 6-ketocholestanol on mitochondria, hydrolyzing adenosine triphosphate in the presence of uncoupling agents-protonophores]. Mansurova SE; Simonian RA; Skulachev VP; Starkov AA Mol Biol (Mosk); 1995; 29(6):1376-83. PubMed ID: 8592507 [No Abstract] [Full Text] [Related]
8. [A correlation between respiration and synthesis of ATP in mitochondria at different degree of uncoupling of oxidative phosphorylation]. Samartsev VN; Kozhina OV; Polishchuk LS Biofizika; 2005; 50(4):660-7. PubMed ID: 16212057 [TBL] [Abstract][Full Text] [Related]
9. Quantitative relationship between protonophoric and uncoupling activities of analogs of SF6847 (2,6-di-t-butyl-4-(2',2'-dicyanovinyl)phenol). Miyoshi H; Nishioka T; Fujita T Biochim Biophys Acta; 1987 May; 891(3):293-9. PubMed ID: 3567180 [TBL] [Abstract][Full Text] [Related]
10. Effect of carbonyl cyanide m-chlorophenylhydrazone on oxidative phosphorylation in rat liver mitochondria: site-specificity of its action. Katyare SS Indian J Biochem Biophys; 1986 Apr; 23(2):70-5. PubMed ID: 3770793 [No Abstract] [Full Text] [Related]
11. Uncoupling of rat liver mitochondrial oxidative phosphorylation by the fasciolicide triclabendazole and its sulfoxide and sulfone metabolites. Carr AW; McCracken RO; Stillwell WH J Parasitol; 1993 Apr; 79(2):198-204. PubMed ID: 8459330 [TBL] [Abstract][Full Text] [Related]
12. Reversible effects of fatty acids on respiration, oxidative phosphorylation, and heat production of rat liver mitochondria. Matsuoka I; Nakamura T J Biochem; 1979 Sep; 86(3):675-81. PubMed ID: 159904 [TBL] [Abstract][Full Text] [Related]
13. On the mechanism of uncoupler-dependent inhibition of acyl-carnitine oxidation by rat liver mitochondria. Osmundsen H; Bremer J FEBS Lett; 1976 Oct; 69(1):221-4. PubMed ID: 992031 [No Abstract] [Full Text] [Related]
14. Uncoupling effect of protonophoric and nonprotonophoric analogs of carbonyl cyanide phenylhydrazone on mitochondrial oxidative phosphorylation. Antalík M; Sturdík E; Sulo P; Propperová A; Mihalovová E; Podhradský D; Dzurila M Gen Physiol Biophys; 1988 Oct; 7(5):517-28. PubMed ID: 3234740 [TBL] [Abstract][Full Text] [Related]
15. Role of the ADP/ATP and aspartate/glutamate antiporters in the uncoupling effect of fatty acids, lauryl sulfate, and 2, 4-dinitrophenol in liver mitochondria. Samartsev VN; Markova OV; Zeldi IP; Smirnov AV Biochemistry (Mosc); 1999 Aug; 64(8):901-11. PubMed ID: 10498806 [TBL] [Abstract][Full Text] [Related]
16. Structural requirements of alkyl acyldithiocarbazates for the uncoupling of oxidative phosphorylation in mitochondria. Terada H; Uda M; Kametani F; Kubota S Biochim Biophys Acta; 1978 Nov; 504(2):237-47. PubMed ID: 718875 [TBL] [Abstract][Full Text] [Related]
17. [Comparison of protonophore and uncoupling functions of weak diacids]. Topaly EE; Tapaly VP; Kozhokaru AF; Rakul AD Biofizika; 1982; 27(3):535-7. PubMed ID: 7093344 [No Abstract] [Full Text] [Related]
18. Effect of amyl azide on respiration and oxidative phosphorylation in mitochondria. Bogucka K; Wojtczak L; Erecińska M Acta Biochim Pol; 1970; 17(3):239-46. PubMed ID: 4320528 [No Abstract] [Full Text] [Related]
19. Mechanism of superoxide anion generation in intact mitochondria in the presence of lucigenin and cyanide. Yurkov IS; Kruglov AG; Evtodienko YV; Yaguzhinsky LS Biochemistry (Mosc); 2003 Dec; 68(12):1349-59. PubMed ID: 14756632 [TBL] [Abstract][Full Text] [Related]
20. [The induction of the beta state of the comuton regulation of mitochondrial oxidative phosphorylation by 2,4-DNP and malonate]. Chelidze MA; Elbakidze GM Izv Akad Nauk SSSR Biol; 1989; (6):926-30. PubMed ID: 2621288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]