BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34201453)

  • 1. Autotrophic vs. Heterotrophic Cultivation of the Marine Diatom
    Cupo A; Landi S; Morra S; Nuzzo G; Gallo C; Manzo E; Fontana A; d'Ippolito G
    Mar Drugs; 2021 Jun; 19(7):. PubMed ID: 34201453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of Lipid Biosynthesis under Heterotrophy in the Marine Diatom
    Morra S; Lanzilli M; Grazioso A; Cupo A; Landi S; Nuzzo G; Castiglia D; Gallo C; Manzo E; Fontana A; d'Ippolito G
    ACS Sustain Chem Eng; 2023 Dec; 11(50):17607-17615. PubMed ID: 38130845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris.
    Tanaka T; Yabuuchi T; Maeda Y; Nojima D; Matsumoto M; Yoshino T
    Bioresour Technol; 2017 Dec; 245(Pt A):567-572. PubMed ID: 28898857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass and eicosapentaenoic acid production from Amphora sp. under different environmental and nutritional conditions.
    Cheah YT; Ng BW; Tan TL; Chia ZS; Chan DJC
    Biotechnol Appl Biochem; 2023 Apr; 70(2):568-580. PubMed ID: 35767864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum.
    Hamilton ML; Warwick J; Terry A; Allen MJ; Napier JA; Sayanova O
    PLoS One; 2015; 10(12):e0144054. PubMed ID: 26658738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoautotrophic production of eicosapentaenoic acid.
    Gu W; Kavanagh JM; McClure DD
    Crit Rev Biotechnol; 2021 Aug; 41(5):731-748. PubMed ID: 33784913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of exogenous phytohormone supplementation on the pigment and fatty acid content of three marine diatoms.
    Fierli D; Aranyos A; Barone ME; Parkes R; Touzet N
    Appl Microbiol Biotechnol; 2022 Sep; 106(18):6195-6207. PubMed ID: 36040486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterotrophic Production of Omega-3 Long-Chain Polyunsaturated Fatty Acids by Trophically Converted Marine Diatom Phaeodactylum tricornutum.
    Hamilton ML; Powers S; Napier JA; Sayanova O
    Mar Drugs; 2016 Mar; 14(3):. PubMed ID: 27005636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterotrophic production of eicosapentaenoic acid by microalgae.
    Wen ZY; Chen F
    Biotechnol Adv; 2003 Jul; 21(4):273-94. PubMed ID: 14499126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of Diatom Strains and Characterization of Cyclotella cryptica as A Potential Fucoxanthin Producer.
    Guo B; Liu B; Yang B; Sun P; Lu X; Liu J; Chen F
    Mar Drugs; 2016 Jul; 14(7):. PubMed ID: 27399729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production.
    Adarme-Vega TC; Lim DK; Timmins M; Vernen F; Li Y; Schenk PM
    Microb Cell Fact; 2012 Jul; 11():96. PubMed ID: 22830315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin.
    Marella TK; Tiwari A
    Bioresour Technol; 2020 Jul; 307():123245. PubMed ID: 32234591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): Effect of some environmental factors.
    Pahl SL; Lewis DM; Chen F; King KD
    J Biosci Bioeng; 2010 Mar; 109(3):235-9. PubMed ID: 20159570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of High-Level Omega-3 Eicosapentaenoic Acid (EPA) Production from Phaeodactylum tricornutum.
    Cui Y; Thomas-Hall SR; Chua ET; Schenk PM
    J Phycol; 2021 Feb; 57(1):258-268. PubMed ID: 33025589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous photoautotrophic production of DHA and EPA by Tisochrysis lutea and Microchloropsis salina in co-culture.
    Thurn AL; Stock A; Gerwald S; Weuster-Botz D
    Bioresour Bioprocess; 2022 Dec; 9(1):130. PubMed ID: 38647795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2.
    Chen CY; Chen YC; Huang HC; Huang CC; Lee WL; Chang JS
    Bioresour Technol; 2013 Nov; 147():160-167. PubMed ID: 23994697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of culture condition on the growth, biochemical composition and EPA production of alkaliphilic Nitzschia plea isolated in the Southeast of China.
    Zhang D; Wen S; Wu X; Cong W
    Bioprocess Biosyst Eng; 2018 Jun; 41(6):831-839. PubMed ID: 29508051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin.
    Yang R; Wei D; Xie J
    Crit Rev Biotechnol; 2020 Nov; 40(7):993-1009. PubMed ID: 32777952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential responses in EPA and fucoxanthin production by the marine diatom Stauroneis sp. under varying cultivation conditions.
    Parkes R; Archer L; Gee DM; Smyth TJ; Gillespie E; Touzet N
    Biotechnol Prog; 2021 Nov; 37(6):e3197. PubMed ID: 34337902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum.
    Pérez-López P; González-García S; Allewaert C; Verween A; Murray P; Feijoo G; Moreira MT
    Sci Total Environ; 2014 Jan; 466-467():991-1002. PubMed ID: 23994733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.