BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34201892)

  • 21. Characterization 0.1 wt.% Nanomaterial/Photopolymer Composites with Poor Nanomaterial Dispersion: Viscosity, Cure Depth and Dielectric Properties.
    Mitkus R; Scharnofske M; Sinapius M
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and characterization of novel electrically conductive PANI-PGS composites for cardiac tissue engineering applications.
    Qazi TH; Rai R; Dippold D; Roether JE; Schubert DW; Rosellini E; Barbani N; Boccaccini AR
    Acta Biomater; 2014 Jun; 10(6):2434-45. PubMed ID: 24561709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible PANI/SWCNT thermoelectric films with ultrahigh electrical conductivity.
    Wu R; Yuan H; Liu C; Lan JL; Yang X; Lin YH
    RSC Adv; 2018 Jul; 8(46):26011-26019. PubMed ID: 35541936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of Electrically Conductive Thermosetting Resin Composites through Optimizing the Thermal Doping of Polyaniline and Radical Polymerization Temperature.
    Takahashi K; Nagura K; Takamura M; Goto T; Takahashi T
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and Characterization of Extruded PLA Films Coated with Polyaniline or Polypyrrole by In Situ Chemical Polymerization.
    Flores León JR; Quiroz Castillo JM; Rodríguez Félix DE; Castillo Ortega MM; Cabrera-González AD; Ramirez-Mendoza CG; Santacruz-Ortega H; Suárez-Campos G; Valenzuela-García JL; Herrera-Franco PJ
    ACS Omega; 2023 Nov; 8(45):43243-43253. PubMed ID: 38024776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research on the Application of MWCNTs/PLA Composite Material in the Manufacturing of Conductive Composite Products in 3D Printing.
    Luo J; Wang H; Zuo D; Ji A; Liu Y
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30513580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic and electrically conductive silica-coated iron oxide/polyaniline nanocomposites for biomedical applications.
    Lalegül-Ülker Ö; Elçin YM
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111600. PubMed ID: 33321644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrically Conducting and Mechanically Strong Graphene-Polylactic Acid Composites for 3D Printing.
    Kim M; Jeong JH; Lee JY; Capasso A; Bonaccorso F; Kang SH; Lee YK; Lee GH
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11841-11848. PubMed ID: 30810305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of SrTiO
    Park D; Ju H; Kim J
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32244794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epoxy-Based Blend Formulation for Dual Curing in Liquid Crystal Display 3D Printing: A Study on Thermomechanical Properties Variation for Enhanced Printability.
    Tosto C; Saitta L; Latteri A; Cicala G
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of actiniae-like atomically thin hydroxylation boron nitride@polyaniline hierarchical composites with adjustable high thermal conductivity and electrical conductivity.
    Bai Y; Yang H; Ge C; He L; Song Q; Zhang X
    Nanotechnology; 2021 Oct; 33(2):. PubMed ID: 34598171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Printability of External and Internal Structures Based on Digital Light Processing 3D Printing Technique.
    Yang Y; Zhou Y; Lin X; Yang Q; Yang G
    Pharmaceutics; 2020 Feb; 12(3):. PubMed ID: 32121141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphitic Carbon Nitride as Reinforcement of Photopolymer Resin for 3D Printing.
    Ko JW
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: Improved electrical conductivity, electrical switching, and tuning properties.
    Tissera ND; Wijesena RN; Rathnayake S; de Silva RM; de Silva KMN
    Carbohydr Polym; 2018 Apr; 186():35-44. PubMed ID: 29455996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites.
    Invernizzi M; Natale G; Levi M; Turri S; Griffini G
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rheological and Curing Behavior of Acrylate-Based Suspensions for the DLP 3D Printing of Complex Zirconia Parts.
    Komissarenko DA; Sokolov PS; Evstigneeva AD; Shmeleva IA; Dosovitsky AE
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30469515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DLP 3D Printing Meets Lignocellulosic Biopolymers: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels.
    Melilli G; Carmagnola I; Tonda-Turo C; Pirri F; Ciardelli G; Sangermano M; Hakkarainen M; Chiappone A
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32722423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators.
    Wang L; Wu Y; Hu T; Guo B; Ma PX
    Acta Biomater; 2017 Sep; 59():68-81. PubMed ID: 28663141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct 3D Printing of Hybrid Nanofiber-Based Nanocomposites for Highly Conductive and Shape Memory Applications.
    Wei H; Cauchy X; Navas IO; Abderrafai Y; Chizari K; Sundararaj U; Liu Y; Leng J; Therriault D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24523-24532. PubMed ID: 31187627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.