These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 34202085)

  • 1. Computational Modeling of Spinal Locomotor Circuitry in the Age of Molecular Genetics.
    Ausborn J; Shevtsova NA; Danner SM
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
    Rybak IA; Shevtsova NA; Lafreniere-Roula M; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):617-39. PubMed ID: 17008376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
    Shevtsova NA; Rybak IA
    J Physiol; 2016 Nov; 594(21):6117-6131. PubMed ID: 27292055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
    Le Gal JP; Juvin L; Cardoit L; Morin D
    J Neurosci; 2016 Jan; 36(3):926-37. PubMed ID: 26791221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ipsilateral and Contralateral Interactions in Spinal Locomotor Circuits Mediated by V1 Neurons: Insights from Computational Modeling.
    Shevtsova NA; Li EZ; Singh S; Dougherty KJ; Rybak IA
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dorsally derived spinal interneurons in locomotor circuits.
    Vallstedt A; Kullander K
    Ann N Y Acad Sci; 2013 Mar; 1279():32-42. PubMed ID: 23531000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation.
    Rybak IA; Stecina K; Shevtsova NA; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):641-58. PubMed ID: 17008375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and circuitry of spinal locomotor interneurons generating different speeds.
    Boije H; Kullander K
    Curr Opin Neurobiol; 2018 Dec; 53():16-21. PubMed ID: 29733915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.
    Gosgnach S; Bikoff JB; Dougherty KJ; El Manira A; Lanuza GM; Zhang Y
    J Neurosci; 2017 Nov; 37(45):10835-10841. PubMed ID: 29118212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shining light into the black box of spinal locomotor networks.
    Whelan PJ
    Philos Trans R Soc Lond B Biol Sci; 2010 Aug; 365(1551):2383-95. PubMed ID: 20603359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent control of locomotor CPG: insights from a simple neuromechanical model.
    Markin SN; Klishko AN; Shevtsova NA; Lemay MA; Prilutsky BI; Rybak IA
    Ann N Y Acad Sci; 2010 Jun; 1198():21-34. PubMed ID: 20536917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Dmrt3-Derived Neurons Suggest a Role within Locomotor Circuits.
    Perry S; Larhammar M; Vieillard J; Nagaraja C; Hilscher MM; Tafreshiha A; Rofo F; Caixeta FV; Kullander K
    J Neurosci; 2019 Mar; 39(10):1771-1782. PubMed ID: 30578339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partly shared spinal cord networks for locomotion and scratching.
    Berkowitz A; Hao ZZ
    Integr Comp Biol; 2011 Dec; 51(6):890-902. PubMed ID: 21700568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?
    Minassian K; Hofstoetter US; Dzeladini F; Guertin PA; Ijspeert A
    Neuroscientist; 2017 Dec; 23(6):649-663. PubMed ID: 28351197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural Interactions in Developing Rhythmogenic Spinal Networks: Insights From Computational Modeling.
    Shevtsova NA; Ha NT; Rybak IA; Dougherty KJ
    Front Neural Circuits; 2020; 14():614615. PubMed ID: 33424558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proprioception: Bottom-up directive for motor recovery after spinal cord injury.
    Takeoka A
    Neurosci Res; 2020 May; 154():1-8. PubMed ID: 31336141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the mammalian locomotor CPG: insights from mistakes and perturbations.
    McCrea DA; Rybak IA
    Prog Brain Res; 2007; 165():235-53. PubMed ID: 17925250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spinal locomotor generator.
    Miller S; Scott PD
    Exp Brain Res; 1977 Nov; 30(2-3):387-403. PubMed ID: 598435
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.