BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34202153)

  • 21. A multifunctional surfactant catalyst inspired by hydrolases.
    Nothling MD; Xiao Z; Hill NS; Blyth MT; Bhaskaran A; Sani MA; Espinosa-Gomez A; Ngov K; White J; Buscher T; Separovic F; O'Mara ML; Coote ML; Connal LA
    Sci Adv; 2020 Apr; 6(14):eaaz0404. PubMed ID: 32270041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure and mechanism of a carbon-carbon bond hydrolase.
    Timm DE; Mueller HA; Bhanumoorthy P; Harp JM; Bunick GJ
    Structure; 1999 Sep; 7(9):1023-33. PubMed ID: 10508789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural insight into catalytic mechanism of PET hydrolase.
    Han X; Liu W; Huang JW; Ma J; Zheng Y; Ko TP; Xu L; Cheng YS; Chen CC; Guo RT
    Nat Commun; 2017 Dec; 8(1):2106. PubMed ID: 29235460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network.
    Lo YC; Lin SC; Shaw JF; Liaw YC
    J Mol Biol; 2003 Jul; 330(3):539-51. PubMed ID: 12842470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray crystallographic and site-directed mutagenesis analysis of the mechanism of Schiff-base formation in phosphonoacetaldehyde hydrolase catalysis.
    Morais MC; Zhang G; Zhang W; Olsen DB; Dunaway-Mariano D; Allen KN
    J Biol Chem; 2004 Mar; 279(10):9353-61. PubMed ID: 14670958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural Insights into an Oxalate-producing Serine Hydrolase with an Unusual Oxyanion Hole and Additional Lyase Activity.
    Oh J; Hwang I; Rhee S
    J Biol Chem; 2016 Jul; 291(29):15185-95. PubMed ID: 27226606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic strategy of S-adenosyl-L-homocysteine hydrolase: transition-state stabilization and the avoidance of abortive reactions.
    Yang X; Hu Y; Yin DH; Turner MA; Wang M; Borchardt RT; Howell PL; Kuczera K; Schowen RL
    Biochemistry; 2003 Feb; 42(7):1900-9. PubMed ID: 12590576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between the induced-fit loop and the activity of Klebsiella pneumoniae pullulanase.
    Saka N; Malle D; Iwamoto H; Takahashi N; Mizutani K; Mikami B
    Acta Crystallogr D Struct Biol; 2019 Sep; 75(Pt 9):792-803. PubMed ID: 31478902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reaction mechanism of the dinuclear zinc enzyme N-acyl-L-homoserine lactone hydrolase: a quantum chemical study.
    Liao RZ; Yu JG; Himo F
    Inorg Chem; 2009 Feb; 48(4):1442-8. PubMed ID: 19159270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of a unique halide-stabilizing residue on the catalytic properties of haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58.
    Hasan K; Gora A; Brezovsky J; Chaloupkova R; Moskalikova H; Fortova A; Nagata Y; Damborsky J; Prokop Z
    FEBS J; 2013 Jul; 280(13):3149-59. PubMed ID: 23490078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of hydrolysis and mutational analysis of N,N-diethyl-m-toluamide hydrolase from Pseudomonas putida DTB.
    Rivera-Cancel G; Sanders JM; Hay AG
    FEBS J; 2012 Mar; 279(6):1044-53. PubMed ID: 22251573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Second step of hydrolytic dehalogenation in haloalkane dehalogenase investigated by QM/MM methods.
    Otyepka M; Banás P; Magistrato A; Carloni P; Damborský J
    Proteins; 2008 Feb; 70(3):707-17. PubMed ID: 17729274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specificity and mechanism of mandelamide hydrolase catalysis.
    Adediran SA; Wang PF; Shilabin AG; Baron CA; McLeish MJ; Pratt RF
    Arch Biochem Biophys; 2017 Mar; 618():23-31. PubMed ID: 28129982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms.
    Holmquist M
    Curr Protein Pept Sci; 2000 Sep; 1(2):209-35. PubMed ID: 12369917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The bacterial
    Kuatsjah E; Chan ACK; Kobylarz MJ; Murphy MEP; Eltis LD
    J Biol Chem; 2017 Nov; 292(44):18290-18302. PubMed ID: 28935670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis of catalysis and substrate recognition by the NAD(H)-dependent α-d-glucuronidase from the glycoside hydrolase family 4.
    Mohapatra SB; Manoj N
    Biochem J; 2021 Feb; 478(4):943-959. PubMed ID: 33565573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active site and laminarin binding in glycoside hydrolase family 55.
    Bianchetti CM; Takasuka TE; Deutsch S; Udell HS; Yik EJ; Bergeman LF; Fox BG
    J Biol Chem; 2015 May; 290(19):11819-32. PubMed ID: 25752603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors.
    Sato M; Liebschner D; Yamada Y; Matsugaki N; Arakawa T; Wills SS; Hattie M; Stubbs KA; Ito T; Senda T; Ashida H; Fushinobu S
    J Biol Chem; 2017 Jul; 292(29):12126-12138. PubMed ID: 28546425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.