These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
513 related articles for article (PubMed ID: 34202196)
1. Comparative Study of Silk Fibroin-Based Hydrogels and Their Potential as Material for 3-Dimensional (3D) Printing. Pudkon W; Laomeephol C; Damrongsakkul S; Kanokpanont S; Ratanavaraporn J Molecules; 2021 Jun; 26(13):. PubMed ID: 34202196 [TBL] [Abstract][Full Text] [Related]
2. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
3. Dityrosine-inspired photocrosslinking technique for 3D printing of silk fibroin-based composite hydrogel scaffolds. Huang Y; Sun G; Lyu L; Li Y; Li D; Fan Q; Yao J; Shao J Soft Matter; 2022 May; 18(19):3705-3712. PubMed ID: 35502755 [TBL] [Abstract][Full Text] [Related]
4. Silk fibroin reactive inks for 3D printing crypt-like structures. Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975 [TBL] [Abstract][Full Text] [Related]
5. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Rajput M; Mondal P; Yadav P; Chatterjee K Int J Biol Macromol; 2022 Mar; 202():644-656. PubMed ID: 35066028 [TBL] [Abstract][Full Text] [Related]
6. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing. Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719 [TBL] [Abstract][Full Text] [Related]
7. 3D Printable Soy/Silk Hybrid Hydrogels for Tissue Engineering Applications. Dorishetty P; Balu R; Gelmi A; Mata JP; Dutta NK; Choudhury NR Biomacromolecules; 2021 Sep; 22(9):3668-3678. PubMed ID: 34460237 [TBL] [Abstract][Full Text] [Related]
8. Silk Fibroin Enhances Cytocompatibilty and Dimensional Stability of Alginate Hydrogels for Light-Based Three-Dimensional Bioprinting. Kim E; Seok JM; Bae SB; Park SA; Park WH Biomacromolecules; 2021 May; 22(5):1921-1931. PubMed ID: 33840195 [TBL] [Abstract][Full Text] [Related]
9. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink. Choi KY; Ajiteru O; Hong H; Suh YJ; Sultan MT; Lee H; Lee JS; Lee YJ; Lee OJ; Kim SH; Park CH Acta Biomater; 2023 Jul; 164():159-174. PubMed ID: 37121370 [TBL] [Abstract][Full Text] [Related]
10. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure. Karamat-Ullah N; Demidov Y; Schramm M; Grumme D; Auer J; Bohr C; Brachvogel B; Maleki H ACS Biomater Sci Eng; 2021 Sep; 7(9):4545-4556. PubMed ID: 34415718 [TBL] [Abstract][Full Text] [Related]
11. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Hong H; Seo YB; Kim DY; Lee JS; Lee YJ; Lee H; Ajiteru O; Sultan MT; Lee OJ; Kim SH; Park CH Biomaterials; 2020 Feb; 232():119679. PubMed ID: 31865191 [TBL] [Abstract][Full Text] [Related]
12. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Kim SH; Yeon YK; Lee JM; Chao JR; Lee YJ; Seo YB; Sultan MT; Lee OJ; Lee JS; Yoon SI; Hong IS; Khang G; Lee SJ; Yoo JJ; Park CH Nat Commun; 2018 Apr; 9(1):1620. PubMed ID: 29693652 [TBL] [Abstract][Full Text] [Related]
13. 3D bioprinted silk fibroin hydrogels for tissue engineering. Kim SH; Hong H; Ajiteru O; Sultan MT; Lee YJ; Lee JS; Lee OJ; Lee H; Park HS; Choi KY; Lee JS; Ju HW; Hong IS; Park CH Nat Protoc; 2021 Dec; 16(12):5484-5532. PubMed ID: 34716451 [TBL] [Abstract][Full Text] [Related]
14. Soft-matrices based on silk fibroin and alginate for tissue engineering. Silva R; Singh R; Sarker B; Papageorgiou DG; Juhasz JA; Roether JA; Cicha I; Kaschta J; Schubert DW; Chrissafis K; Detsch R; Boccaccini AR Int J Biol Macromol; 2016 Dec; 93(Pt B):1420-1431. PubMed ID: 27156697 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405 [TBL] [Abstract][Full Text] [Related]
16. Phospholipid-induced silk fibroin hydrogels and their potential as cell carriers for tissue regeneration. Laomeephol C; Guedes M; Ferreira H; Reis RL; Kanokpanont S; Damrongsakkul S; Neves NM J Tissue Eng Regen Med; 2020 Jan; 14(1):160-172. PubMed ID: 31671250 [TBL] [Abstract][Full Text] [Related]
17. Silver nitrate-assisted photo-crosslinking for enhancing the mechanical properties of an alginate/silk fibroin-based 3D scaffold. Moon SH; Choi G; Cha HJ; Yang YJ Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38604157 [TBL] [Abstract][Full Text] [Related]
18. Silk Hydrogel for Tissue Engineering: A Review. Ealla KKR; Veeraraghavan VP; Ravula NR; Durga CS; Ramani P; Sahu V; Poola PK; Patil S; Panta P J Contemp Dent Pract; 2022 Apr; 23(4):467-477. PubMed ID: 35945843 [TBL] [Abstract][Full Text] [Related]
19. Rheological and ion-conductive properties of injectable and self-healing hydrogels based on xanthan gum and silk fibroin. Zhang R; Tao Y; Xu Q; Liu N; Chen P; Zhou Y; Bai Z Int J Biol Macromol; 2020 Feb; 144():473-482. PubMed ID: 31862367 [TBL] [Abstract][Full Text] [Related]
20. 3D printing of self-standing and vascular supportive multimaterial hydrogel structures for organ engineering. Liu S; Hu Q; Shen Z; Krishnan S; Zhang H; Ramalingam M Biotechnol Bioeng; 2022 Jan; 119(1):118-133. PubMed ID: 34617587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]