These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
514 related articles for article (PubMed ID: 34202196)
41. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting. Kim SH; Kim DY; Lim TH; Park CH Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090 [TBL] [Abstract][Full Text] [Related]
42. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats. Li XH; Zhu X; Liu XY; Xu HH; Jiang W; Wang JJ; Chen F; Zhang S; Li RX; Chen XY; Tu Y J Mater Sci Mater Med; 2021 Mar; 32(4):31. PubMed ID: 33751254 [TBL] [Abstract][Full Text] [Related]
43. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Sun W; Gregory DA; Tomeh MA; Zhao X Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540895 [TBL] [Abstract][Full Text] [Related]
44. Fabrication of protease XIV-loaded microspheres for cell spreading in silk fibroin hydrogels. Xiao W; Zhang J; Qu X; Chen K; Gao H; He J; Ma T; Li B; Liao X J Mater Sci Mater Med; 2020 Nov; 31(12):128. PubMed ID: 33247786 [TBL] [Abstract][Full Text] [Related]
46. Injectable Ultrasonication-Induced Silk Fibroin Hydrogel for Cartilage Repair and Regeneration. Yuan T; Li Z; Zhang Y; Shen K; Zhang X; Xie R; Liu F; Fan W Tissue Eng Part A; 2021 Sep; 27(17-18):1213-1224. PubMed ID: 33353462 [TBL] [Abstract][Full Text] [Related]
47. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
48. Fabrication of Antibacterial, Osteo-Inductor 3D Printed Aerogel-Based Scaffolds by Incorporation of Drug Laden Hollow Mesoporous Silica Microparticles into the Self-Assembled Silk Fibroin Biopolymer. Ng P; Pinho AR; Gomes MC; Demidov Y; Krakor E; Grume D; Herb M; Lê K; Mano J; Mathur S; Maleki H Macromol Biosci; 2022 Apr; 22(4):e2100442. PubMed ID: 35029037 [TBL] [Abstract][Full Text] [Related]
49. Silk fibroin as biomaterial for bone tissue engineering. Melke J; Midha S; Ghosh S; Ito K; Hofmann S Acta Biomater; 2016 Feb; 31():1-16. PubMed ID: 26360593 [TBL] [Abstract][Full Text] [Related]
50. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds. Sun K; Li R; Jiang W; Sun Y; Li H Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126 [TBL] [Abstract][Full Text] [Related]
51. Silk fibroin hydrogels from the Colombian silkworm Bombyx mori L: Evaluation of physicochemical properties. Zuluaga-Vélez A; Cómbita-Merchán DF; Buitrago-Sierra R; Santa JF; Aguilar-Fernández E; Sepúlveda-Arias JC PLoS One; 2019; 14(3):e0213303. PubMed ID: 30830943 [TBL] [Abstract][Full Text] [Related]
52. Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness. Li Z; Liu L; Chen Y Carbohydr Polym; 2022 Sep; 291():119616. PubMed ID: 35698412 [TBL] [Abstract][Full Text] [Related]
53. 3D Printing Silk Fibroin/Polyacrylamide Triple-Network Composite Hydrogels with Stretchability, Conductivity, and Strain-Sensing Ability as Bionic Electronic Skins. Niu Q; Huang L; Fan S; Yao X; Zhang Y ACS Biomater Sci Eng; 2024 May; 10(5):3489-3499. PubMed ID: 38661561 [TBL] [Abstract][Full Text] [Related]
54. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Farokhi M; Aleemardani M; Solouk A; Mirzadeh H; Teuschl AH; Redl H Biomed Mater; 2021 Feb; 16(2):022004. PubMed ID: 33594992 [TBL] [Abstract][Full Text] [Related]
55. 3D printing with silk: considerations and applications. DeBari MK; Keyser MN; Bai MA; Abbott RD Connect Tissue Res; 2020 Mar; 61(2):163-173. PubMed ID: 30558445 [TBL] [Abstract][Full Text] [Related]
56. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919 [TBL] [Abstract][Full Text] [Related]
57. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite. Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091 [TBL] [Abstract][Full Text] [Related]
58. Laccase-mediated construction of flexible double-network hydrogels based on silk fibroin and tyramine-modified hyaluronic acid. Wang L; Xu B; Nong Y; Wang P; Yu Y; Deng C; Yuan J; Wang Q Int J Biol Macromol; 2020 Oct; 160():795-805. PubMed ID: 32497666 [TBL] [Abstract][Full Text] [Related]