These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
514 related articles for article (PubMed ID: 34202196)
61. Alginate-poloxamer/silk fibroin hydrogels with covalently and physically cross-linked networks for cartilage tissue engineering. Liu J; Fang Q; Lin H; Yu X; Zheng H; Wan Y Carbohydr Polym; 2020 Nov; 247():116593. PubMed ID: 32829786 [TBL] [Abstract][Full Text] [Related]
62. Bioactive silk fibroin hydrogels: Unraveling the potential for biomedical engineering. Fernández-González A; de Lorenzo González C; Rodríguez-Varillas S; Badía-Laíño R Int J Biol Macromol; 2024 Oct; 278(Pt 3):134834. PubMed ID: 39154674 [TBL] [Abstract][Full Text] [Related]
63. Preparation of silk fibroin/hyaluronic acid hydrogels with enhanced mechanical performance by a combination of physical and enzymatic crosslinking. Qu X; Yan L; Liu S; Tan Y; Xiao J; Cao Y; Chen K; Xiao W; Li B; Liao X J Biomater Sci Polym Ed; 2021 Aug; 32(12):1635-1653. PubMed ID: 34004124 [TBL] [Abstract][Full Text] [Related]
65. 3D Printing of Silk Protein Structures by Aqueous Solvent-Directed Molecular Assembly. Mu X; Wang Y; Guo C; Li Y; Ling S; Huang W; Cebe P; Hsu HH; De Ferrari F; Jiang X; Xu Q; Balduini A; Omenetto FG; Kaplan DL Macromol Biosci; 2020 Jan; 20(1):e1900191. PubMed ID: 31433126 [TBL] [Abstract][Full Text] [Related]
66. Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing. Ma T; Lv L; Ouyang C; Hu X; Liao X; Song Y; Hu X Carbohydr Polym; 2021 Feb; 253():117217. PubMed ID: 33278981 [TBL] [Abstract][Full Text] [Related]
67. Tailorable hydrogel of gelatin with silk fibroin and its activation/crosslinking for enhanced proliferation of fibroblast cells. Kulkarni G; Guha Ray P; Byram PK; Kaushal M; Dhara S; Das S Int J Biol Macromol; 2020 Dec; 164():4073-4083. PubMed ID: 32898545 [TBL] [Abstract][Full Text] [Related]
70. Development and optimization of starch-based biomaterial inks and the effect of infill patterns on the mechanical, physicochemical, and biological properties of 3D printed scaffolds for tissue engineering. Shyam R; Palaniappan A Int J Biol Macromol; 2024 Feb; 258(Pt 2):128986. PubMed ID: 38154358 [TBL] [Abstract][Full Text] [Related]
71. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Qi Y; Wang H; Wei K; Yang Y; Zheng RY; Kim IS; Zhang KQ Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28273799 [TBL] [Abstract][Full Text] [Related]
72. 3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells. Huang L; Yuan W; Hong Y; Fan S; Yao X; Ren T; Song L; Yang G; Zhang Y Cellulose (Lond); 2021; 28(1):241-257. PubMed ID: 33132545 [TBL] [Abstract][Full Text] [Related]
73. Amorphous Silk Fibroin Nanofiber Hydrogels with Enhanced Mechanical Properties. Liu J; Ding Z; Lu G; Wang J; Wang L; Lu Q Macromol Biosci; 2019 Dec; 19(12):e1900326. PubMed ID: 31738015 [TBL] [Abstract][Full Text] [Related]
74. Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture. Sanz-Fraile H; Amoros S; Mendizabal I; Galvez-Monton C; Prat-Vidal C; Bayes-Genis A; Navajas D; Farre R; Otero J Tissue Eng Part A; 2020 Mar; 26(5-6):358-370. PubMed ID: 32085691 [TBL] [Abstract][Full Text] [Related]
75. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering. Singh YP; Bandyopadhyay A; Mandal BB ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678 [TBL] [Abstract][Full Text] [Related]
76. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
77. Enzymatically crosslinked and mechanically tunable silk fibroin/pullulan hydrogels for mesenchymal stem cells delivery. Li T; Song X; Weng C; Wang X; Wu J; Sun L; Gong X; Zeng WN; Yang L; Chen C Int J Biol Macromol; 2018 Aug; 115():300-307. PubMed ID: 29665386 [TBL] [Abstract][Full Text] [Related]
78. A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application. Hajiabbas M; Alemzadeh I; Vossoughi M Carbohydr Polym; 2020 Oct; 245():116465. PubMed ID: 32718603 [TBL] [Abstract][Full Text] [Related]
79. Extrusion Printed Silk Fibroin Scaffolds with Post-mineralized Calcium Phosphate as a Bone Structural Material. Shi R; Cai X; He G; Guan J; Liu Y; Lu H; Mao Z; Li Y; Guo H; Hai Y Int J Bioprint; 2022; 8(4):596. PubMed ID: 36483751 [TBL] [Abstract][Full Text] [Related]
80. Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering. Cengiz IF; Maia FR; da Silva Morais A; Silva-Correia J; Pereira H; Canadas RF; Espregueira-Mendes J; Kwon IK; Reis RL; Oliveira JM Biofabrication; 2020 Mar; 12(2):025028. PubMed ID: 32069441 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]