BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34202262)

  • 1.
    Amereh M; Edwards R; Akbari M; Nadler B
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34202262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and Growth of Co-Culture Tumour Spheroids: New Compartment-Based Mathematical Models and Experiments.
    Murphy RJ; Gunasingh G; Haass NK; Simpson MJ
    Bull Math Biol; 2023 Dec; 86(1):8. PubMed ID: 38091169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of spheroid self-assembly in liquid-overlay culture of DU 145 human prostate cancer cells.
    Enmon RM; O'Connor KC; Lacks DJ; Schwartz DK; Dotson RS
    Biotechnol Bioeng; 2001 Mar; 72(6):579-91. PubMed ID: 11460249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model.
    Mascheroni P; Stigliano C; Carfagna M; Boso DP; Preziosi L; Decuzzi P; Schrefler BA
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1215-28. PubMed ID: 26746883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic modeling of the fusion of multicellular tumor spheroids in growth phase.
    Dechristé G; Fehrenbach J; Griseti E; Lobjois V; Poignard C
    J Theor Biol; 2018 Oct; 454():102-109. PubMed ID: 29775683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modeling of the proliferation gradient in multicellular tumor spheroids.
    Michel T; Fehrenbach J; Lobjois V; Laurent J; Gomes A; Colin T; Poignard C
    J Theor Biol; 2018 Dec; 458():133-147. PubMed ID: 30145131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour.
    Matzavinos A; Chaplain MA; Kuznetsov VA
    Math Med Biol; 2004 Mar; 21(1):1-34. PubMed ID: 15065736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids.
    Casciari JJ; Sotirchos SV; Sutherland RM
    Cell Prolif; 1992 Jan; 25(1):1-22. PubMed ID: 1540680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug resistance conferred by MDR1 expression in spheroids formed by glioblastoma cell lines.
    Kolchinsky A; Roninson IB
    Anticancer Res; 1997; 17(5A):3321-7. PubMed ID: 9413166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous pancreatic cancer spheroids mimic growth pattern of circulating tumor cell clusters and macrometastases: displaying heterogeneity and crater-like structure on inner layer.
    Feng H; Ou BC; Zhao JK; Yin S; Lu AG; Oechsle E; Thasler WE
    J Cancer Res Clin Oncol; 2017 Sep; 143(9):1771-1786. PubMed ID: 28497169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instability of turing patterns in reaction-diffusion-ODE systems.
    Marciniak-Czochra A; Karch G; Suzuki K
    J Math Biol; 2017 Feb; 74(3):583-618. PubMed ID: 27305913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth characteristics of glioblastoma spheroids.
    Nirmala C; Rao JS; Ruifrok AC; Langford LA; Obeyesekere M
    Int J Oncol; 2001 Dec; 19(6):1109-15. PubMed ID: 11713578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the lysosomal destabilizing drug siramesine on glioblastoma in vitro and in vivo.
    Jensen SS; Petterson SA; Halle B; Aaberg-Jessen C; Kristensen BW
    BMC Cancer; 2017 Mar; 17(1):178. PubMed ID: 28270132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment.
    Stein AM; Demuth T; Mobley D; Berens M; Sander LM
    Biophys J; 2007 Jan; 92(1):356-65. PubMed ID: 17040992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ordinary differential equations with applications in molecular biology.
    Ilea M; Turnea M; Rotariu M
    Rev Med Chir Soc Med Nat Iasi; 2012; 116(1):347-52. PubMed ID: 23077920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of stress in the growth of a multicell spheroid.
    Ambrosi D; Mollica F
    J Math Biol; 2004 May; 48(5):477-99. PubMed ID: 15133619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modelling of avascular-tumour growth.
    Ward JP; King JR
    IMA J Math Appl Med Biol; 1997 Mar; 14(1):39-69. PubMed ID: 9080687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico ordinary differential equation/partial differential equation hemodialysis model estimates methadone removal during dialysis.
    Linares OA; Schiesser WE; Fudin J; Pham TC; Bettinger JJ; Mathew RO; Daly AL
    J Pain Res; 2015; 8():417-29. PubMed ID: 26229501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical Analysis of a Transformed ODE from a PDE Multiscale Model of Hepatitis C Virus Infection.
    Kitagawa K; Kuniya T; Nakaoka S; Asai Y; Watashi K; Iwami S
    Bull Math Biol; 2019 May; 81(5):1427-1441. PubMed ID: 30644067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential equations with applications in cancer diseases.
    Ilea M; Turnea M; Rotariu M
    Rev Med Chir Soc Med Nat Iasi; 2013; 117(2):572-7. PubMed ID: 24340548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.