These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 34202546)

  • 21. Haptic Glove Systems in Combination with Semi-Immersive Virtual Reality for Upper Extremity Motor Rehabilitation after Stroke: A Systematic Review and Meta-Analysis.
    Fernández-Vázquez D; Cano-de-la-Cuerda R; Navarro-López V
    Int J Environ Res Public Health; 2022 Aug; 19(16):. PubMed ID: 36012019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response.
    Mattia D; Pichiorri F; Colamarino E; Masciullo M; Morone G; Toppi J; Pisotta I; Tamburella F; Lorusso M; Paolucci S; Puopolo M; Cincotti F; Molinari M
    BMC Neurol; 2020 Jun; 20(1):254. PubMed ID: 32593293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Lower-Limb Motor Tasks via Brain-Computer Interfaces: A Topical Overview.
    Asanza V; Peláez E; Loayza F; Lorente-Leyva LL; Peluffo-Ordóñez DH
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients.
    Donati AR; Shokur S; Morya E; Campos DS; Moioli RC; Gitti CM; Augusto PB; Tripodi S; Pires CG; Pereira GA; Brasil FL; Gallo S; Lin AA; Takigami AK; Aratanha MA; Joshi S; Bleuler H; Cheng G; Rudolph A; Nicolelis MA
    Sci Rep; 2016 Aug; 6():30383. PubMed ID: 27513629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Restoring movement representation and alleviating phantom limb pain through short-term neurorehabilitation with a virtual reality system.
    Osumi M; Ichinose A; Sumitani M; Wake N; Sano Y; Yozu A; Kumagaya S; Kuniyoshi Y; Morioka S
    Eur J Pain; 2017 Jan; 21(1):140-147. PubMed ID: 27378656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application.
    Khan MA; Das R; Iversen HK; Puthusserypady S
    Comput Biol Med; 2020 Aug; 123():103843. PubMed ID: 32768038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Current Research of Combining Multi-Modal Brain-Computer Interfaces With Virtual Reality.
    Wen D; Liang B; Zhou Y; Chen H; Jung TP
    IEEE J Biomed Health Inform; 2021 Sep; 25(9):3278-3287. PubMed ID: 33373308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Game-Based Virtual Reality System for Upper Limb Rehabilitation After Stroke in a Clinical Environment: Systematic Review and Meta-Analysis.
    Wang L; Chen JL; Wong AMK; Liang KC; Tseng KC
    Games Health J; 2022 Oct; 11(5):277-297. PubMed ID: 36252097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upper Limb Movement Execution Classification using Electroencephalography for Brain Computer Interface.
    Khan SU; Majid M; Linguraru MG; Muhammad Anwar S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients.
    Antelis JM; Montesano L; Ramos-Murguialday A; Birbaumer N; Minguez J
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):99-111. PubMed ID: 27046866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unraveling Transformative Effects after tDCS and BCI Intervention in Chronic Post-Stroke Patient Rehabilitation-An Alternative Treatment Design Study.
    Lima JPS; Silva LA; Delisle-Rodriguez D; Cardoso VF; Nakamura-Palacios EM; Bastos-Filho TF
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of BCI systems in neurorehabilitation: a scoping review.
    Bamdad M; Zarshenas H; Auais MA
    Disabil Rehabil Assist Technol; 2015; 10(5):355-64. PubMed ID: 25560222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of the Efficacy of EEG-Based MI-BCI With Visual Feedback and EEG Correlates of Mental Fatigue for Upper-Limb Stroke Rehabilitation.
    Foong R; Ang KK; Quek C; Guan C; Phua KS; Kuah CWK; Deshmukh VA; Yam LHL; Rajeswaran DK; Tang N; Chew E; Chua KSG
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):786-795. PubMed ID: 31180829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of BCI-Controlled Pedaling Training System With Multiple Modalities of Feedback on Motor and Cognitive Function Rehabilitation of Early Subacute Stroke Patients.
    Yuan Z; Peng Y; Wang L; Song S; Chen S; Yang L; Liu H; Wang H; Shi G; Han C; Cammon JA; Zhang Y; Qiao J; Wang G
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2569-2577. PubMed ID: 34871175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparing Recalibration Strategies for Electroencephalography-Based Decoders of Movement Intention in Neurological Patients with Motor Disability.
    López-Larraz E; Ibáñez J; Trincado-Alonso F; Monge-Pereira E; Pons JL; Montesano L
    Int J Neural Syst; 2018 Sep; 28(7):1750060. PubMed ID: 29463157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. VITA-an everyday virtual reality setup for prosthetics and upper-limb rehabilitation.
    Nissler C; Nowak M; Connan M; Büttner S; Vogel J; Kossyk I; Márton ZC; Castellini C
    J Neural Eng; 2019 Apr; 16(2):026039. PubMed ID: 30864550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of virtual embodiment and exercises on functional ability and range of motion in orthopedic rehabilitation.
    Matamala-Gomez M; Slater M; Sanchez-Vives MV
    Sci Rep; 2022 Mar; 12(1):5046. PubMed ID: 35322080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards a mechanistic approach for the development of non-invasive brain-computer interfaces for motor rehabilitation.
    Mrachacz-Kersting N; Ibáñez J; Farina D
    J Physiol; 2021 May; 599(9):2361-2374. PubMed ID: 33728656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving performance in motor imagery BCI-based control applications via virtually embodied feedback.
    Choi JW; Huh S; Jo S
    Comput Biol Med; 2020 Dec; 127():104079. PubMed ID: 33126130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A multi-modal modified feedback self-paced BCI to control the gait of an avatar.
    Alchalabi B; Faubert J; Labbé DR
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33711832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.