These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34202652)

  • 1. Tuning the Thermogelation and Rheology of Poly(2-Oxazoline)/Poly(2-Oxazine)s Based Thermosensitive Hydrogels for 3D Bioprinting.
    Haider MS; Ahmad T; Yang M; Hu C; Hahn L; Stahlhut P; Groll J; Luxenhofer R
    Gels; 2021 Jun; 7(3):. PubMed ID: 34202652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse Thermogelation of Aqueous Triblock Copolymer Solutions into Macroporous Shear-Thinning 3D Printable Inks.
    Hahn L; Maier M; Stahlhut P; Beudert M; Flegler V; Forster S; Altmann A; Töppke F; Fischer K; Seiffert S; Böttcher B; Lühmann T; Luxenhofer R
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12445-12456. PubMed ID: 32142257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting.
    Hu C; Ahmad T; Haider MS; Hahn L; Stahlhut P; Groll J; Luxenhofer R
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34875631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermosensitive Hydrogel Based on Poly(2-Ethyl-2-Oxazoline)-Poly(D,L-Lactide)-Poly(2-Ethyl-2-Oxazoline) for Sustained Salmon Calcitonin Delivery.
    Wang X; Wang Y; Yan M; Liang X; Zhao N; Ma Y; Gao Y
    AAPS PharmSciTech; 2020 Jan; 21(2):71. PubMed ID: 31953574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization and biocompatibility of poly(2-ethyl-2-oxazoline)-poly(D,L-lactide)-poly(2-ethyl-2-oxazoline) hydrogels.
    Wang X; Li X; Li Y; Zhou Y; Fan C; Li W; Ma S; Fan Y; Huang Y; Li N; Liu Y
    Acta Biomater; 2011 Dec; 7(12):4149-59. PubMed ID: 21810488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-Dependent Rheological and Viscoelastic Investigation of a Poly(2-methyl-2-oxazoline)-b-poly(2-
    Lübtow MM; Mrlik M; Hahn L; Altmann A; Beudert M; Lühmann T; Luxenhofer R
    J Funct Biomater; 2019 Aug; 10(3):. PubMed ID: 31394886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Inverse Thermogelling Bioink Based on an ABA-Type Poly(2-oxazoline) Amphiphile.
    Hahn L; Karakaya E; Zorn T; Sochor B; Maier M; Stahlhut P; Forster S; Fischer K; Seiffert S; Pöppler AC; Detsch R; Luxenhofer R
    Biomacromolecules; 2021 Jul; 22(7):3017-3027. PubMed ID: 34100282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Merging bioresponsive release of insulin-like growth factor I with 3D printable thermogelling hydrogels.
    Beudert M; Hahn L; Horn AHC; Hauptstein N; Sticht H; Meinel L; Luxenhofer R; Gutmann M; Lühmann T
    J Control Release; 2022 Jul; 347():115-126. PubMed ID: 35489547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking.
    Hahn L; Beudert M; Gutmann M; Keßler L; Stahlhut P; Fischer L; Karakaya E; Lorson T; Thievessen I; Detsch R; Lühmann T; Luxenhofer R
    Macromol Biosci; 2021 Oct; 21(10):e2100122. PubMed ID: 34292657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting.
    Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS
    Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile xanthan gum-based support bath material compatible with multiple crosslinking mechanisms: rheological properties, printability, and cytocompatibility study.
    Lai G; Meagher L
    Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38565131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications.
    Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS
    Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier.
    Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
    Kim MH; Lee YW; Jung WK; Oh J; Nam SY
    J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration.
    Dong L; Bu Z; Xiong Y; Zhang H; Fang J; Hu H; Liu Z; Li X
    Int J Biol Macromol; 2021 Oct; 188():72-81. PubMed ID: 34364938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.