These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34202653)

  • 1. Silicone Nanofilament Support Layers in an Open-Channel System for the Fast Reduction of
    Naef NU; Seeger S
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34202653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of nitrogen-doped Cu-biochar and its application into catalytic reduction of p-nitrophenol.
    Cho DW; Kim S; Tsang YF; Song H
    Environ Geochem Health; 2019 Aug; 41(4):1729-1737. PubMed ID: 28455819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-Helical Peptide-Gold Nanoparticle Hybrids: Synthesis, Characterization, and Catalytic Activity.
    Tomizaki KY; Yamaguchi Y; Tsukamoto N; Imai T
    Protein Pept Lett; 2018; 25(1):56-63. PubMed ID: 29237364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Silver-Silicone-Nanofilament-Composite Material for Water Disinfection.
    Meier M; Suppiger A; Eberl L; Seeger S
    Small; 2017 Jan; 13(4):. PubMed ID: 27622297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges.
    Kamal T; Asiri AM; Ali N
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120019. PubMed ID: 34126398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous Silica-Coated Gold Nanorods: A Highly Active Catalyst for the Reduction of 4-Nitrophenol.
    Mohanta J; Satapathy S; Si S
    Chemphyschem; 2016 Feb; 17(3):364-8. PubMed ID: 26663755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Catalytic Efficiency of Nanostructured β-CoMoO₄ in the Reduction of the Ortho-, Meta- and Para-Nitrophenol Isomers.
    Al-Wadaani F; Omer A; Abboudi M; Oudghiri Hassani H; Rakass S; Messali M; Benaissa M
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29425122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silica/silicone nanofilament hybrid coatings with almost perfect superhydrophobicity.
    Zhang J; Seeger S
    Chemphyschem; 2013 Jun; 14(8):1646-51. PubMed ID: 23616368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation into the catalytic activity of porous platinum nanostructures.
    Kalekar AM; Sharma KK; Lehoux A; Audonnet F; Remita H; Saha A; Sharma GK
    Langmuir; 2013 Sep; 29(36):11431-9. PubMed ID: 23947652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide.
    Hussain MA; Yang M; Lee TJ; Kim JW; Choi BG
    J Colloid Interface Sci; 2015 Aug; 451():216-20. PubMed ID: 25898116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol.
    Zhang W; Tan F; Wang W; Qiu X; Qiao X; Chen J
    J Hazard Mater; 2012 May; 217-218():36-42. PubMed ID: 22459973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure analysis of sputter-coated and ion-beam sputter-coated films: a comparative study.
    Kemmenoe BH; Bullock GR
    J Microsc; 1983 Nov; 132(Pt 2):153-63. PubMed ID: 6358510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple borophosphate glasses for on-demand growth of self-supported copper nanoparticles in the reduction of 4-nitrophenol.
    Locatelli PPP; Gurtat M; Lenz GF; Marroquin JFR; Felix JF; Schneider R; Borba CE
    J Hazard Mater; 2021 Aug; 416():125801. PubMed ID: 34492778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocatalytic Assemblies for Catalytic Reduction of Nitrophenols: A Critical Review.
    Din MI; Khalid R; Hussain Z; Hussain T; Mujahid A; Najeeb J; Izhar F
    Crit Rev Anal Chem; 2020; 50(4):322-338. PubMed ID: 31303031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrophotometric analysis of stability of gold nanoparticles during catalytic reduction of 4-nitrophenol.
    Saira F; Saleemi S; Razzaq H; Qureshi R
    Turk J Chem; 2021; 45(1):82-91. PubMed ID: 33679155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.
    Saha S; Pal A; Kundu S; Basu S; Pal T
    Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized silicone nanofilaments: a novel material for selective protein enrichment.
    Zimmermann J; Rabe M; Verdes D; Seeger S
    Langmuir; 2008 Feb; 24(3):1053-7. PubMed ID: 18154313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol.
    Narayanan KB; Sakthivel N
    J Hazard Mater; 2011 May; 189(1-2):519-25. PubMed ID: 21420237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.
    Zhu N; Cao Y; Shi C; Wu P; Ma H
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7627-38. PubMed ID: 26739993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of cellulose acetate-ferric oxide nanocomposite supported metal catalysts toward the reduction of environmental pollutants.
    Bakhsh EM; Khan SA; Marwani HM; Danish EY; Asiri AM; Khan SB
    Int J Biol Macromol; 2018 Feb; 107(Pt A):668-677. PubMed ID: 28919532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.