These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34202653)

  • 21. Green synthesis of gold nanoparticles by a newly isolated strain Trichosporon montevideense for catalytic hydrogenation of nitroaromatics.
    Shen W; Qu Y; Pei X; Zhang X; Ma Q; Zhang Z; Li S; Zhou J
    Biotechnol Lett; 2016 Sep; 38(9):1503-8. PubMed ID: 27160995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance of Preformed Au/Cu Nanoclusters Deposited on MgO Powders in the Catalytic Reduction of 4-Nitrophenol in Solution.
    Cai R; Ellis PR; Yin J; Liu J; Brown CM; Griffin R; Chang G; Yang D; Ren J; Cooke K; Bishop PT; Theis W; Palmer RE
    Small; 2018 Mar; 14(13):e1703734. PubMed ID: 29412512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Colloidal gold-catalyzed reduction of ferrocyanate (III) by borohydride ions: a model system for redox catalysis.
    Carregal-Romero S; Pérez-Juste J; Hervés P; Liz-Marzán LM; Mulvaney P
    Langmuir; 2010 Jan; 26(2):1271-7. PubMed ID: 19824688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal nanoparticles decorated sodium alginate‑carbon nitride composite beads as effective catalyst for the reduction of organic pollutants.
    Khan SB; Ahmad S; Kamal T; Asiri AM; Bakhsh EM
    Int J Biol Macromol; 2020 Dec; 164():1087-1098. PubMed ID: 32673713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ catalytic activity of CuO nanosheets synthesized from a surfactant-lamellar template.
    Jang KS; Kim JD
    J Nanosci Nanotechnol; 2011 May; 11(5):4496-500. PubMed ID: 21780485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuneable catalytic properties of hybrid microgels containing gold nanoparticles.
    Pich A; Karak A; Lu Y; Ghosh AK; Adler HJ
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3763-9. PubMed ID: 17256327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO
    Ghazizadeh AJ; Afkhami A; Bagheri H
    Mikrochim Acta; 2018 May; 185(6):296. PubMed ID: 29752544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of platinum-coated templates of insulin nanowires used in reducing 4-nitrophenol.
    Batzli KM; Love BJ
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():103-11. PubMed ID: 25579902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-yield growth of carbon nanofilaments on nickel foam using nickel-tin intermetallic catalysts.
    Jeong N; Hwang KS; Yang SC
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7734-9. PubMed ID: 25942857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Au Catalyst Decorated Silica Spheres: Synthesis and High-Performance in 4-Nitrophenol Reduction.
    Zhang F; Yang P; Matras-Postolek K
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5966-74. PubMed ID: 27427658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple fabrication of bimetallic platinum-rhodium alloyed nano-multipods: A highly effective and recyclable catalyst for reduction of 4-nitrophenol and rhodamine B.
    Yan Q; Wang XY; Feng JJ; Mei LP; Wang AJ
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):701-710. PubMed ID: 32911415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficiency of Ag(0)@chitosan gel beads in catalytic reduction of nitroaromatic compounds by sodium borohydride.
    Sargin I
    Int J Biol Macromol; 2019 Sep; 137():576-582. PubMed ID: 31279060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds.
    Gupta VK; Atar N; Yola ML; Üstündağ Z; Uzun L
    Water Res; 2014 Jan; 48():210-7. PubMed ID: 24112627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental evidence for the nanocage effect in catalysis with hollow nanoparticles.
    Mahmoud MA; Saira F; El-Sayed MA
    Nano Lett; 2010 Sep; 10(9):3764-9. PubMed ID: 20701250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon Supported Gold Nanoparticles for the Catalytic Reduction of 4-Nitrophenol.
    Rodríguez Molina H; Santos Muñoz JL; Domínguez Leal MI; Reina TR; Ivanova S; Centeno Gallego MÁ; Odriozola JA
    Front Chem; 2019; 7():548. PubMed ID: 31475132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-dependent catalytic properties of Au nanoparticles supported on hierarchical nickel silicate nanostructures.
    Jin R; Sun S; Yang Y; Xing Y; Yu D; Yu X; Song S
    Dalton Trans; 2013 Jun; 42(22):7888-93. PubMed ID: 23235504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation, Characterization and Catalytic Activity of Nickel Molybdate (NiMoO₄) Nanoparticles.
    Oudghiri-Hassani H; Al Wadaani F
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29382153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct deposition of gold nanoplates and porous platinum on substrates through solvent-free chemical reduction of metal precursors with ethylene glycol vapor.
    Cho SJ; Mei X; Ouyang J
    Phys Chem Chem Phys; 2012 Dec; 14(45):15793-801. PubMed ID: 23086437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalysis by unsupported skeletal gold catalysts.
    Wittstock A; Bäumer M
    Acc Chem Res; 2014 Mar; 47(3):731-9. PubMed ID: 24266888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioinspired synthesis of a soft-nanofilament-based coating consisting of polysilsesquioxanes/polyamine and its divergent surface control.
    Yuan JJ; Kimitsuka N; Jin RH
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3126-33. PubMed ID: 23534941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.