These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34202718)

  • 1. Optical Control of Superlattices States Formed Due to Electronic Phase Separation in Multiferroic Eu
    Sanina V; Khannanov B; Golovenchits E
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34202718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common features of low-temperature spin-charge separation and superlattice formation in multiferroic manganites and antiferromagnetic cuprates.
    Sanina VA; Golovenchits EI; Zalesskii VG; Khannanov BKh
    J Phys Condens Matter; 2013 Aug; 25(33):336001. PubMed ID: 23877087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin-wave excitations in superlattices self-assembled in multiferroic single crystals.
    Sanina VA; Golovenchits EI; Zalesskii VG
    J Phys Condens Matter; 2012 Aug; 24(34):346002. PubMed ID: 22872124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetism and hybrid improper ferroelectricity in LaMO
    Zhou P; Lu S; Li C; Zhong C; Zhao Z; Qu L; Min Y; Dong Z; Zhang N; Liu JM
    Phys Chem Chem Phys; 2019 Sep; 21(36):20132-20136. PubMed ID: 31482891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coexistence of Magnetic Order and Ferroelectricity at 2D Nanosheet Interfaces.
    Li BW; Osada M; Ebina Y; Ueda S; Sasaki T
    J Am Chem Soc; 2016 Jun; 138(24):7621-5. PubMed ID: 27295544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of Interface Impurities and Chemical Gradients with High Magnetoelectric Coupling Strength in Multiferroic BiFeO
    Lorenz M; Hirsch D; Patzig C; Höche T; Hohenberger S; Hochmuth H; Lazenka V; Temst K; Grundmann M
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18956-18965. PubMed ID: 28508622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-control of magnetization and polarization by electric and magnetic fields with competing multiferroic and weak-ferromagnetic phases.
    Choi YJ; Zhang CL; Lee N; Cheong SW
    Phys Rev Lett; 2010 Aug; 105(9):097201. PubMed ID: 20868188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategy to Induce Multiferroic Property in (RTiO
    Yao F; Meng J; Zhang L; Liu X; Meng J; Zhang H
    Chemphyschem; 2019 May; 20(9):1145-1152. PubMed ID: 30873705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning ferroelectricity and ferromagnetism in BiFeO
    Jin C; Geng W; Wang L; Han W; Zheng D; Hu S; Ye M; Xu Z; Ji Y; Zhao J; Chen Z; Wang G; Tang Y; Zhu Y; Ma X; Chen L
    Nanoscale; 2020 May; 12(17):9810-9816. PubMed ID: 32329477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergent multiferroicity and strain-driven metal-semiconductor transitions in LaMnO
    Zhou P; Wang J; Liu H; Zhao L; Yang Q; Zhong C; Zhao Z; Qu L; Dong Z
    Phys Chem Chem Phys; 2020 Aug; 22(31):17503-17512. PubMed ID: 32716457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic mechanistic study on the multiferroic of R2CoMnO6/La2CoMnO6 (R = Ce, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm) by chemical and hydrostatic pressures: a first-principles calculation.
    Meng J; Liu X; Hao X; Zhang L; Yao F; Meng J; Zhang H
    Phys Chem Chem Phys; 2016 Sep; 18(34):23613-20. PubMed ID: 27506617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal-Orientation-Modulated Exchange Bias in Orthorhombic-YMnO3/La0.6Sr0.4MnO3 Multiferroic Heterostructures.
    Zheng D; Gong J; Jin C; Li P; Bai H
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14758-62. PubMed ID: 26083193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-Principles Study of n*AlN/n*ScN Superlattices with High Dielectric Capacity for Energy Storage.
    Zhang WC; Wu H; Sun WF; Zhang ZP
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-plane CrI
    Zhao Y; Liu H; Zhao J; Gao J
    Phys Chem Chem Phys; 2022 Oct; 24(41):25530-25536. PubMed ID: 36254662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monolayer atomic crystal molecular superlattices.
    Wang C; He Q; Halim U; Liu Y; Zhu E; Lin Z; Xiao H; Duan X; Feng Z; Cheng R; Weiss NO; Ye G; Huang YC; Wu H; Cheng HC; Shakir I; Liao L; Chen X; Goddard WA; Huang Y; Duan X
    Nature; 2018 Mar; 555(7695):231-236. PubMed ID: 29517002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low energy consumption spintronics using multiferroic heterostructures.
    Trassin M
    J Phys Condens Matter; 2016 Jan; 28(3):033001. PubMed ID: 26703387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local symmetry-driven interfacial magnetization and electronic states in (ZnO)
    Gao JX; Ng YS; Cheng H; Wang HQ; Lü TY; Zheng JC
    Phys Chem Chem Phys; 2024 Apr; 26(15):12084-12096. PubMed ID: 38586994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior Properties of Energetically Stable La(2/3)Sr(1/3)MnO(3)/Tetragonal BiFeO3 Multiferroic Superlattices.
    Feng N; Mi W; Wang X; Cheng Y; Schwingenschlögl U
    ACS Appl Mater Interfaces; 2015 May; 7(19):10612-6. PubMed ID: 25928202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles prediction of interfacial magnetoelectric coupling in tetragonal La2/3Sr1/3MnO3/BiFeO3 multiferroic superlattices.
    Feng N; Mi W; Wang X
    Phys Chem Chem Phys; 2015 May; 17(20):13647-53. PubMed ID: 25940540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic.
    Mundy JA; Brooks CM; Holtz ME; Moyer JA; Das H; Rébola AF; Heron JT; Clarkson JD; Disseler SM; Liu Z; Farhan A; Held R; Hovden R; Padgett E; Mao Q; Paik H; Misra R; Kourkoutis LF; Arenholz E; Scholl A; Borchers JA; Ratcliff WD; Ramesh R; Fennie CJ; Schiffer P; Muller DA; Schlom DG
    Nature; 2016 Sep; 537(7621):523-7. PubMed ID: 27652564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.