These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 34202718)
1. Optical Control of Superlattices States Formed Due to Electronic Phase Separation in Multiferroic Eu Sanina V; Khannanov B; Golovenchits E Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34202718 [TBL] [Abstract][Full Text] [Related]
2. Common features of low-temperature spin-charge separation and superlattice formation in multiferroic manganites and antiferromagnetic cuprates. Sanina VA; Golovenchits EI; Zalesskii VG; Khannanov BKh J Phys Condens Matter; 2013 Aug; 25(33):336001. PubMed ID: 23877087 [TBL] [Abstract][Full Text] [Related]
3. Spin-wave excitations in superlattices self-assembled in multiferroic single crystals. Sanina VA; Golovenchits EI; Zalesskii VG J Phys Condens Matter; 2012 Aug; 24(34):346002. PubMed ID: 22872124 [TBL] [Abstract][Full Text] [Related]
4. Magnetism and hybrid improper ferroelectricity in LaMO Zhou P; Lu S; Li C; Zhong C; Zhao Z; Qu L; Min Y; Dong Z; Zhang N; Liu JM Phys Chem Chem Phys; 2019 Sep; 21(36):20132-20136. PubMed ID: 31482891 [TBL] [Abstract][Full Text] [Related]
5. Coexistence of Magnetic Order and Ferroelectricity at 2D Nanosheet Interfaces. Li BW; Osada M; Ebina Y; Ueda S; Sasaki T J Am Chem Soc; 2016 Jun; 138(24):7621-5. PubMed ID: 27295544 [TBL] [Abstract][Full Text] [Related]
6. Correlation of Interface Impurities and Chemical Gradients with High Magnetoelectric Coupling Strength in Multiferroic BiFeO Lorenz M; Hirsch D; Patzig C; Höche T; Hohenberger S; Hochmuth H; Lazenka V; Temst K; Grundmann M ACS Appl Mater Interfaces; 2017 Jun; 9(22):18956-18965. PubMed ID: 28508622 [TBL] [Abstract][Full Text] [Related]
7. Cross-control of magnetization and polarization by electric and magnetic fields with competing multiferroic and weak-ferromagnetic phases. Choi YJ; Zhang CL; Lee N; Cheong SW Phys Rev Lett; 2010 Aug; 105(9):097201. PubMed ID: 20868188 [TBL] [Abstract][Full Text] [Related]
8. Strategy to Induce Multiferroic Property in (RTiO Yao F; Meng J; Zhang L; Liu X; Meng J; Zhang H Chemphyschem; 2019 May; 20(9):1145-1152. PubMed ID: 30873705 [TBL] [Abstract][Full Text] [Related]
9. Tuning ferroelectricity and ferromagnetism in BiFeO Jin C; Geng W; Wang L; Han W; Zheng D; Hu S; Ye M; Xu Z; Ji Y; Zhao J; Chen Z; Wang G; Tang Y; Zhu Y; Ma X; Chen L Nanoscale; 2020 May; 12(17):9810-9816. PubMed ID: 32329477 [TBL] [Abstract][Full Text] [Related]
10. Emergent multiferroicity and strain-driven metal-semiconductor transitions in LaMnO Zhou P; Wang J; Liu H; Zhao L; Yang Q; Zhong C; Zhao Z; Qu L; Dong Z Phys Chem Chem Phys; 2020 Aug; 22(31):17503-17512. PubMed ID: 32716457 [TBL] [Abstract][Full Text] [Related]
11. Microscopic mechanistic study on the multiferroic of R2CoMnO6/La2CoMnO6 (R = Ce, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm) by chemical and hydrostatic pressures: a first-principles calculation. Meng J; Liu X; Hao X; Zhang L; Yao F; Meng J; Zhang H Phys Chem Chem Phys; 2016 Sep; 18(34):23613-20. PubMed ID: 27506617 [TBL] [Abstract][Full Text] [Related]
12. Crystal-Orientation-Modulated Exchange Bias in Orthorhombic-YMnO3/La0.6Sr0.4MnO3 Multiferroic Heterostructures. Zheng D; Gong J; Jin C; Li P; Bai H ACS Appl Mater Interfaces; 2015 Jul; 7(27):14758-62. PubMed ID: 26083193 [TBL] [Abstract][Full Text] [Related]
13. First-Principles Study of n*AlN/n*ScN Superlattices with High Dielectric Capacity for Energy Storage. Zhang WC; Wu H; Sun WF; Zhang ZP Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745305 [TBL] [Abstract][Full Text] [Related]