These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34202759)

  • 1. Effect of Morphological Characteristics and Biomineralization of 3D-Printed Gelatin/Hyaluronic Acid/Hydroxyapatite Composite Scaffolds on Bone Tissue Regeneration.
    Kim JW; Han YS; Lee HM; Kim JK; Kim YJ
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis.
    Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F
    J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering.
    Kim H; Hwangbo H; Koo Y; Kim G
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic synthesis of Mg-substituted hydroxyapatite nanocomposites and three-dimensional printing of composite scaffolds for bone regeneration.
    Chen S; Shi Y; Zhang X; Ma J
    J Biomed Mater Res A; 2019 Nov; 107(11):2512-2521. PubMed ID: 31319006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration.
    El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM
    Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
    Trachtenberg JE; Placone JK; Smith BT; Fisher JP; Mikos AG
    J Biomater Sci Polym Ed; 2017 Apr; 28(6):532-554. PubMed ID: 28125380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering.
    Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hierarchical scaffold with a highly pore-interconnective 3D printed PLGA/n-HA framework and an extracellular matrix like gelatin network filler for bone regeneration.
    Dou Y; Huang J; Xia X; Wei J; Zou Q; Zuo Y; Li J; Li Y
    J Mater Chem B; 2021 Jun; 9(22):4488-4501. PubMed ID: 34019618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments.
    Konka J; Buxadera-Palomero J; Espanol M; Ginebra MP
    Acta Biomater; 2021 Oct; 134():744-759. PubMed ID: 34358699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo.
    Chen S; Shi Y; Zhang X; Ma J
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110893. PubMed ID: 32409051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration.
    Shamaz BH; Anitha A; Vijayamohan M; Kuttappan S; Nair S; Nair MB
    Nanotechnology; 2015 Oct; 26(40):405101. PubMed ID: 26373968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences.
    Vozzi G; Corallo C; Carta S; Fortina M; Gattazzo F; Galletti M; Giordano N
    J Biomed Mater Res A; 2014 May; 102(5):1415-21. PubMed ID: 23775901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering.
    Lee CM; Yang SW; Jung SC; Kim BH
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2747-750. PubMed ID: 29664596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity.
    Yu J; Xu Y; Li S; Seifert GV; Becker ML
    Biomacromolecules; 2017 Dec; 18(12):4171-4183. PubMed ID: 29020441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printable Composite Biomaterials Based on GelMA and Hydroxyapatite Powders Doped with Cerium Ions for Bone Tissue Regeneration.
    Leu Alexa R; Cucuruz A; Ghițulică CD; Voicu G; Stamat Balahura LR; Dinescu S; Vlasceanu GM; Stavarache C; Ianchis R; Iovu H; Costache M
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration.
    Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.