These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 34202780)
1. Microstructure Investigation of Polymer Electrolyte Fuel Cell Catalyst Layers Containing Perfluorosulfonated Ionomer. Koga M; Matsumoto H; Kunishima M; Tokita M; Masunaga H; Ohta N; Takeuchi A; Mizukado J; Sugimori H; Shinohara K; Uemura S; Yoshida T; Hirai S Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34202780 [TBL] [Abstract][Full Text] [Related]
2. Distinguishing Adsorbed and Deposited Ionomers in the Catalyst Layer of Polymer Electrolyte Fuel Cells Using Contrast-Variation Small-Angle Neutron Scattering. Harada M; Takata SI; Iwase H; Kajiya S; Kadoura H; Kanaya T ACS Omega; 2021 Jun; 6(23):15257-15263. PubMed ID: 34151104 [TBL] [Abstract][Full Text] [Related]
3. Microstructure-based modeling of aging mechanisms in catalyst layers of polymer electrolyte fuel cells. Malek K; Franco AA J Phys Chem B; 2011 Jun; 115(25):8088-101. PubMed ID: 21648461 [TBL] [Abstract][Full Text] [Related]
4. Effect of Blended Perfluorinated Sulfonic Acid Ionomer Binder on the Performance of Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells. Kim BS; Park JH; Park JS Membranes (Basel); 2023 Sep; 13(9):. PubMed ID: 37755216 [TBL] [Abstract][Full Text] [Related]
5. Equation Elucidating the Catalyst-Layer Proton Conductivity in a Polymer Electrolyte Fuel Cell Based on the Ionomer Distribution Determined Using Small-Angle Neutron Scattering. Harada M; Kadoura H; Takata SI; Iwase H; Kajiya S; Suzuki T; Hasegawa N; Shinohara A; Kato S ACS Appl Mater Interfaces; 2023 Sep; 15(36):42594-42602. PubMed ID: 37650483 [TBL] [Abstract][Full Text] [Related]
6. Transport and Electrochemical Interface Properties of Ionomers in Low-Pt Loading Catalyst Layers: Effect of Ionomer Equivalent Weight and Relative Humidity. Poojary S; Islam MN; Shrivastava UN; Roberts EPL; Karan K Molecules; 2020 Jul; 25(15):. PubMed ID: 32722653 [TBL] [Abstract][Full Text] [Related]
7. Effects of Ink Formulation on Construction of Catalyst Layers for High-Performance Polymer Electrolyte Membrane Fuel Cells. Gong Q; Li C; Liu Y; Ilavsky J; Guo F; Cheng X; Xie J ACS Appl Mater Interfaces; 2021 Aug; 13(31):37004-37013. PubMed ID: 34323080 [TBL] [Abstract][Full Text] [Related]
8. Rheological Investigation on the Microstructure of Fuel Cell Catalyst Inks. Khandavalli S; Park JH; Kariuki NN; Myers DJ; Stickel JJ; Hurst K; Neyerlin KC; Ulsh M; Mauger SA ACS Appl Mater Interfaces; 2018 Dec; 10(50):43610-43622. PubMed ID: 30525374 [TBL] [Abstract][Full Text] [Related]
9. Effect of Dispersion Solvents and Ionomers on the Rheology of Catalyst Inks and Catalyst Layer Structure for Proton Exchange Membrane Fuel Cells. Guo Y; Yang D; Li B; Yang D; Ming P; Zhang C ACS Appl Mater Interfaces; 2021 Jun; 13(23):27119-27128. PubMed ID: 34086430 [TBL] [Abstract][Full Text] [Related]
10. Tuning the Ionomer Distribution in the Fuel Cell Catalyst Layer with Scaling the Ionomer Aggregate Size in Dispersion. Doo G; Lee JH; Yuk S; Choi S; Lee DH; Lee DW; Kim HG; Kwon SH; Lee SG; Kim HT ACS Appl Mater Interfaces; 2018 May; 10(21):17835-17841. PubMed ID: 29722957 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the Interaction between Nafion Ionomer and Surface Functionalized Carbon Black Using Both Ultrasmall Angle X-ray Scattering and Cryo-TEM. Yang F; Xin L; Uzunoglu A; Qiu Y; Stanciu L; Ilavsky J; Li W; Xie J ACS Appl Mater Interfaces; 2017 Feb; 9(7):6530-6538. PubMed ID: 28128921 [TBL] [Abstract][Full Text] [Related]
12. Preparation of high catalyst utilization electrodes for polymer electrolyte fuel cells. Song JM; Suzuki S; Uchida H; Watanabe M Langmuir; 2006 Jul; 22(14):6422-8. PubMed ID: 16800709 [TBL] [Abstract][Full Text] [Related]
13. Microstructural observation of the swollen catalyst layers of fuel cells by cryo-TEM. Shimanuki J; Imai H; Ito Y; Nishino Y; Miyazawa A Microscopy (Oxf); 2023 Feb; 72(1):60-63. PubMed ID: 36401875 [TBL] [Abstract][Full Text] [Related]
14. Same-View Nano-XAFS/STEM-EDS Imagings of Pt Chemical Species in Pt/C Cathode Catalyst Layers of a Polymer Electrolyte Fuel Cell. Takao S; Sekizawa O; Samjeské G; Nagamatsu S; Kaneko T; Yamamoto T; Higashi K; Nagasawa K; Uruga T; Iwasawa Y J Phys Chem Lett; 2015 Jun; 6(11):2121-6. PubMed ID: 26266513 [TBL] [Abstract][Full Text] [Related]
15. On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. Soboleva T; Zhao X; Malek K; Xie Z; Navessin T; Holdcroft S ACS Appl Mater Interfaces; 2010 Feb; 2(2):375-84. PubMed ID: 20356182 [TBL] [Abstract][Full Text] [Related]
16. Possible scenario of forming a catalyst layer for proton exchange membrane fuel cells. Zeng R; Zhang HY; Liang SZ; Wang LG; Jiang LJ; Liu XP RSC Adv; 2020 Jan; 10(9):5502-5506. PubMed ID: 35498292 [TBL] [Abstract][Full Text] [Related]
17. Electron tomography of Nafion ionomer coated on Pt/carbon black in high utilization electrode for PEFCs. Uchida H; Song JM; Suzuki S; Nakazawa E; Baba N; Watanabe M J Phys Chem B; 2006 Jul; 110(27):13319-21. PubMed ID: 16821850 [TBL] [Abstract][Full Text] [Related]
18. Potential-Dependent Ionomer Rearrangement on the Pt Surface in Polymer Electrolyte Membrane Fuel Cells. Lee DW; Hyun J; Oh E; Seok K; Bae H; Park J; Kim HT ACS Appl Mater Interfaces; 2024 Jan; 16(4):4637-4647. PubMed ID: 38251952 [TBL] [Abstract][Full Text] [Related]
19. Microstructural observation of fuel cell catalyst inks by Cryo-SEM and Cryo-TEM. Shimanuki J; Takahashi S; Tohma H; Ohma A; Ishihara A; Ito Y; Nishino Y; Miyazawa A Microscopy (Oxf); 2017 Jun; 66(3):204-208. PubMed ID: 28339813 [TBL] [Abstract][Full Text] [Related]
20. A Numerical Assessment of Mitigation Strategies to Reduce Local Oxygen and Proton Transport Resistances in Polymer Electrolyte Fuel Cells. García-Salaberri PA Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]