These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34202834)

  • 1. A Particulate Matter Concentration Prediction Model Based on Long Short-Term Memory and an Artificial Neural Network.
    Park J; Chang S
    Int J Environ Res Public Health; 2021 Jun; 18(13):. PubMed ID: 34202834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long short-term memory - Fully connected (LSTM-FC) neural network for PM
    Zhao J; Deng F; Cai Y; Chen J
    Chemosphere; 2019 Apr; 220():486-492. PubMed ID: 30594800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PM
    Yang M; Fan H; Zhao K
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31739449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of complete ensemble empirical mode decomposition with deep long short-term memory model for particulate matter concentration prediction.
    Fu M; Le C; Fan T; Prakapovich R; Manko D; Dmytrenko O; Lande D; Shahid S; Yaseen ZM
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):64818-64829. PubMed ID: 34318419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation.
    Li X; Peng L; Yao X; Cui S; Hu Y; You C; Chi T
    Environ Pollut; 2017 Dec; 231(Pt 1):997-1004. PubMed ID: 28898956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning methods to predict particulate matter PM
    Palanichamy N; Haw SC; S S; Murugan R; Govindasamy K
    F1000Res; 2022; 11():406. PubMed ID: 36531254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural network-based method for modeling PM 2.5 measurements obtained from the surface particulate matter network.
    Onyeuwaoma N; Okoh D; Okere B
    Environ Monit Assess; 2021 Apr; 193(5):261. PubMed ID: 33846862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of data preprocessing and feature selection process for prediction of hourly PM
    Aksangür İ; Eren B; Erden C
    Environ Pollut; 2022 Oct; 311():119973. PubMed ID: 35985430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on PM2.5 Spatiotemporal Forecasting Model Based on LSTM Neural Network.
    Zhao F; Liang Z; Zhang Q; Seng D; Chen X
    Comput Intell Neurosci; 2021; 2021():1616806. PubMed ID: 34712315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A balanced social LSTM for PM
    Shi L; Zhang H; Xu X; Han M; Zuo P
    Chemosphere; 2022 Mar; 291(Pt 3):133124. PubMed ID: 34861262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential prediction of quantitative health risk assessment for the fine particulate matter in an underground facility using deep recurrent neural networks.
    Loy-Benitez J; Vilela P; Li Q; Yoo C
    Ecotoxicol Environ Saf; 2019 Mar; 169():316-324. PubMed ID: 30458398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roadside vehicle particulate matter concentration estimation using artificial neural network model in Addis Ababa, Ethiopia.
    Jida SN; Hetet JF; Chesse P; Guadie A
    J Environ Sci (China); 2021 Mar; 101():428-439. PubMed ID: 33334536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimate hourly PM
    Wang B; Yuan Q; Yang Q; Zhu L; Li T; Zhang L
    Environ Pollut; 2021 Feb; 271():116327. PubMed ID: 33360654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda.
    Coker ES; Amegah AK; Mwebaze E; Ssematimba J; Bainomugisha E
    Environ Res; 2021 Aug; 199():111352. PubMed ID: 34043968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional Prediction of Ozone and Fine Particulate Matter Using Diffusion Convolutional Recurrent Neural Network.
    Wang D; Wang HW; Lu KF; Peng ZR; Zhao J
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting PM
    Lagesse B; Wang S; Larson TV; Kim AA
    Environ Sci Technol; 2020 Dec; 54(23):15320-15328. PubMed ID: 33201675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 24-Hour prediction of PM
    Teng M; Li S; Xing J; Song G; Yang J; Dong J; Zeng X; Qin Y
    Sci Total Environ; 2022 May; 821():153276. PubMed ID: 35074389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ensemble long short-term memory neural network for hourly PM
    Bai Y; Zeng B; Li C; Zhang J
    Chemosphere; 2019 May; 222():286-294. PubMed ID: 30708163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.