These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 34203102)
1. Near-Infrared Reflectance Spectroscopy for Predicting the Phospholipid Fraction and the Total Fatty Acid Composition of Freeze-Dried Beef. Ripoll G; Failla S; Panea B; Hocquette JF; Dunner S; Olleta JL; Christensen M; Ertbjerg P; Richardson I; Contò M; Albertí P; Sañudo C; Williams JL Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203102 [TBL] [Abstract][Full Text] [Related]
2. Genetic analysis of beef fatty acid composition predicted by near-infrared spectroscopy. Cecchinato A; De Marchi M; Penasa M; Casellas J; Schiavon S; Bittante G J Anim Sci; 2012 Feb; 90(2):429-38. PubMed ID: 21948610 [TBL] [Abstract][Full Text] [Related]
3. Prediction of beef meat fatty acid composition by visible-near-infrared spectroscopy was improved by preliminary freeze-drying. Andueza D; Listrat A; Durand D; Normand J; Mourot BP; Gruffat D Meat Sci; 2019 Dec; 158():107910. PubMed ID: 31419600 [TBL] [Abstract][Full Text] [Related]
4. Breeds and muscle types modulate performance of near-infrared reflectance spectroscopy to predict the fatty acid composition of bovine meat. Mourot BP; Gruffat D; Durand D; Chesneau G; Mairesse G; Andueza D Meat Sci; 2015 Jan; 99():104-12. PubMed ID: 25443970 [TBL] [Abstract][Full Text] [Related]
5. Prediction of lamb meat fatty acid composition using near-infrared reflectance spectroscopy (NIRS). Guy F; Prache S; Thomas A; Bauchart D; Andueza D Food Chem; 2011 Aug; 127(3):1280-6. PubMed ID: 25214127 [TBL] [Abstract][Full Text] [Related]
6. On-line prediction of lamb fatty acid composition by visible near infrared spectroscopy. Pullanagari RR; Yule IJ; Agnew M Meat Sci; 2015 Feb; 100():156-63. PubMed ID: 25460120 [TBL] [Abstract][Full Text] [Related]
7. Genetic correlation estimates between beef fatty acid profile with meat and carcass traits in Nellore cattle finished in feedlot. Feitosa FL; Olivieri BF; Aboujaoude C; Pereira AS; de Lemos MV; Chiaia HL; Berton MP; Peripolli E; Ferrinho AM; Mueller LF; Mazalli MR; de Albuquerque LG; de Oliveira HN; Tonhati H; Espigolan R; Tonussi RL; de Oliveira Silva RM; Gordo DG; Magalhães AF; Aguilar I; Baldi F J Appl Genet; 2017 Feb; 58(1):123-132. PubMed ID: 27475083 [TBL] [Abstract][Full Text] [Related]
8. Determination of fatty acids in broiler breast meat by near-infrared reflectance spectroscopy. Zhou LJ; Wu H; Li JT; Wang ZY; Zhang LY Meat Sci; 2012 Mar; 90(3):658-64. PubMed ID: 22085539 [TBL] [Abstract][Full Text] [Related]
9. Online prediction of fatty acid profiles in crossbred Limousin and Aberdeen Angus beef cattle using near infrared reflectance spectroscopy. Prieto N; Ross DW; Navajas EA; Richardson RI; Hyslop JJ; Simm G; Roehe R Animal; 2011 Jan; 5(1):155-65. PubMed ID: 22440714 [TBL] [Abstract][Full Text] [Related]
10. At-line prediction of fatty acid profile in chicken breast using near infrared reflectance spectroscopy. De Marchi M; Riovanto R; Penasa M; Cassandro M Meat Sci; 2012 Mar; 90(3):653-7. PubMed ID: 22082651 [TBL] [Abstract][Full Text] [Related]
11. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review]. Tao LL; Yang XJ; Deng JM; Zhang X Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3002-9. PubMed ID: 24555369 [TBL] [Abstract][Full Text] [Related]
12. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. Soyeurt H; Dehareng F; Gengler N; McParland S; Wall E; Berry DP; Coffey M; Dardenne P J Dairy Sci; 2011 Apr; 94(4):1657-67. PubMed ID: 21426953 [TBL] [Abstract][Full Text] [Related]
13. Using near-infrared spectroscopy to determine intramuscular fat and fatty acids of beef applying different prediction approaches. Barragán-Hernández W; Mahecha-Ledesma L; Burgos-Paz W; Olivera-Angel M; Angulo-Arizala J J Anim Sci; 2020 Nov; 98(11):. PubMed ID: 33099624 [TBL] [Abstract][Full Text] [Related]
14. Effects of including a ruminally protected lipid supplement in the diet on the fatty acid composition of beef muscle. Scollan ND; Enser M; Gulati SK; Richardson I; Wood JD Br J Nutr; 2003 Sep; 90(3):709-16. PubMed ID: 13129478 [TBL] [Abstract][Full Text] [Related]
15. Application of NIRS for predicting fatty acids in intramuscular fat of rabbit. Zomeño C; Juste V; Hernández P Meat Sci; 2012 Jun; 91(2):155-9. PubMed ID: 22326062 [TBL] [Abstract][Full Text] [Related]
16. Intramuscular fat and fatty acid composition of longissimus muscle from divergent pure breeds of cattle. Dinh TT; Blanton JR; Riley DG; Chase CC; Coleman SW; Phillips WA; Brooks JC; Miller MF; Thompson LD J Anim Sci; 2010 Feb; 88(2):756-66. PubMed ID: 19783694 [TBL] [Abstract][Full Text] [Related]
17. Feasibility of near infrared transmittance spectroscopy to predict fatty acid composition of commercial processed meat. De Marchi M; Manuelian CL; Ton S; Cassandro M; Penasa M J Sci Food Agric; 2018 Jan; 98(1):64-73. PubMed ID: 28523863 [TBL] [Abstract][Full Text] [Related]
18. Validation of fatty acid predictions in milk using mid-infrared spectrometry across cattle breeds. Maurice-Van Eijndhoven MH; Soyeurt H; Dehareng F; Calus MP Animal; 2013 Feb; 7(2):348-54. PubMed ID: 23031721 [TBL] [Abstract][Full Text] [Related]
19. Comparison of near and medium infrared spectroscopy to predict fatty acid composition on fresh and thawed milk. Coppa M; Revello-Chion A; Giaccone D; Ferlay A; Tabacco E; Borreani G Food Chem; 2014 May; 150():49-57. PubMed ID: 24360418 [TBL] [Abstract][Full Text] [Related]
20. Effect of vitamin C addition to ground beef from grass-fed or grain-fed sources on color and lipid stability, and prediction of fatty acid composition by near-infrared reflectance analysis. Realini CE; Duckett SK; Windham WR Meat Sci; 2004 Sep; 68(1):35-43. PubMed ID: 22062005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]