These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34203127)

  • 1. Shear Band Evolution under Cyclic Loading and Fatigue Property in Metallic Glasses: A Brief Review.
    Wang X; Wu S; Qu R; Zhang Z
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34203127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic Deformation in Metallic Glasses.
    Sha ZD; Qu SX; Liu ZS; Wang TJ; Gao H
    Nano Lett; 2015 Oct; 15(10):7010-5. PubMed ID: 26422317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tension-Tension Fatigue Behavior of High-Toughness Zr
    Yang YH; Yi J; Yang N; Liang W; Huang HR; Huang B; Jia YD; Bian XL; Wang G
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34070483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism.
    Gludovatz B; Demetriou MD; Floyd M; Hohenwarter A; Johnson WL; Ritchie RO
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18419-24. PubMed ID: 24167284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Study on the Fatigue Limit of Metallic Glasses under Cyclic Tension-Compression Loading.
    Yan J; Meng W; Chen Z; Guo H; Yan X
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32276314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass.
    Wang CC; Mao YW; Shan ZW; Dao M; Li J; Sun J; Ma E; Suresh S
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19725-30. PubMed ID: 24255113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation.
    He J; Kaban I; Mattern N; Song K; Sun B; Zhao J; Kim do H; Eckert J; Greer AL
    Sci Rep; 2016 May; 6():25832. PubMed ID: 27181922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The shear band controlled deformation in metallic glass: a perspective from fracture.
    Yang GN; Shao Y; Yao KF
    Sci Rep; 2016 Feb; 6():21852. PubMed ID: 26899145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instability Analysis and Free Volume Simulations of Shear Band Directions and Arrangements in Notched Metallic Glasses.
    Li W; Gao Y; Bei H
    Sci Rep; 2016 Oct; 6():34878. PubMed ID: 27721462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dilatancy induced ductile-brittle transition of shear band in metallic glasses.
    Zeng F; Jiang MQ; Dai LH
    Proc Math Phys Eng Sci; 2018 Apr; 474(2212):20170836. PubMed ID: 29740259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exceptional fracture resistance of ultrathin metallic glass films due to an intrinsic size effect.
    Glushko O; Mühlbacher M; Gammer C; Cordill MJ; Mitterer C; Eckert J
    Sci Rep; 2019 Jun; 9(1):8281. PubMed ID: 31164663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions.
    Chen TH; Tsai CK
    Materials (Basel); 2015 Apr; 8(4):1831-1840. PubMed ID: 28788034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation-Induced Crystal Growth or Redissolution, and Crystal-Induced Strengthening or Ductilization in Metallic Glasses Containing Nanocrystals.
    Thaiyanurak T; Soonthornkit S; Gordon O; Feng Z; Xu D
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulation of Structural Signals of Shear-Band Formation in Zr
    Feng SD; Chan KKC; Zhao L; Wang LM; Liu RP
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30562968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focus: Nucleation kinetics of shear bands in metallic glass.
    Wang JQ; Perepezko JH
    J Chem Phys; 2016 Dec; 145(21):211803. PubMed ID: 28799383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass.
    Shen LQ; Luo P; Hu YC; Bai HY; Sun YH; Sun BA; Liu YH; Wang WH
    Nat Commun; 2018 Oct; 9(1):4414. PubMed ID: 30356051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses.
    Launey ME; Hofmann DC; Johnson WL; Ritchie RO
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):4986-91. PubMed ID: 19289820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Critical Criterion on Runaway Shear Banding in Metallic Glasses.
    Sun BA; Yang Y; Wang WH; Liu CT
    Sci Rep; 2016 Feb; 6():21388. PubMed ID: 26893196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to catch a shear band and explain plasticity of metallic glasses with continuum mechanics.
    Glushko O; Pippan R; Şopu D; Mitterer C; Eckert J
    Nat Commun; 2024 Jul; 15(1):5601. PubMed ID: 38961099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode II Behavior of High-Strength Concrete under Monotonic, Cyclic and Fatigue Loading.
    Becks H; Classen M
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.