These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 34203187)
1. Development of a Light-Weight Unmanned Aerial Vehicle for Precision Agriculture. Ukaegbu UF; Tartibu LK; Okwu MO; Olayode IO Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34203187 [TBL] [Abstract][Full Text] [Related]
2. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management. Hunter JE; Gannon TW; Richardson RJ; Yelverton FH; Leon RG Pest Manag Sci; 2020 Apr; 76(4):1386-1392. PubMed ID: 31622004 [TBL] [Abstract][Full Text] [Related]
3. A novel semi-supervised framework for UAV based crop/weed classification. Khan S; Tufail M; Khan MT; Khan ZA; Iqbal J; Alam M PLoS One; 2021; 16(5):e0251008. PubMed ID: 33970938 [TBL] [Abstract][Full Text] [Related]
4. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Peña JM; Torres-Sánchez J; Serrano-Pérez A; de Castro AI; López-Granados F Sensors (Basel); 2015 Mar; 15(3):5609-26. PubMed ID: 25756867 [TBL] [Abstract][Full Text] [Related]
5. Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery. Xia F; Quan L; Lou Z; Sun D; Li H; Lv X Front Plant Sci; 2022; 13():938604. PubMed ID: 35937335 [TBL] [Abstract][Full Text] [Related]
6. Weed target detection at seedling stage in paddy fields based on YOLOX. Deng X; Qi L; Liu Z; Liang S; Gong K; Qiu G PLoS One; 2023; 18(12):e0294709. PubMed ID: 38091355 [TBL] [Abstract][Full Text] [Related]
7. Weed Detection from Unmanned Aerial Vehicle Imagery Using Deep Learning-A Comparison between High-End and Low-Cost Multispectral Sensors. Seiche AT; Wittstruck L; Jarmer T Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475081 [TBL] [Abstract][Full Text] [Related]
8. Multi-format open-source weed image dataset for real-time weed identification in precision agriculture. Rai N; Mahecha MV; Christensen A; Quanbeck J; Zhang Y; Howatt K; Ostlie M; Sun X Data Brief; 2023 Dec; 51():109691. PubMed ID: 37920388 [TBL] [Abstract][Full Text] [Related]
9. Harnessing UAVs and deep learning for accurate grass weed detection in wheat fields: a study on biomass and yield implications. Liu T; Zhao Y; Wang H; Wu W; Yang T; Zhang W; Zhu S; Sun C; Yao Z Plant Methods; 2024 Sep; 20(1):144. PubMed ID: 39300566 [TBL] [Abstract][Full Text] [Related]
10. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards. Wang C; Liu Y; Zhang Z; Han L; Li Y; Zhang H; Wongsuk S; Li Y; Wu X; He X Pest Manag Sci; 2022 Jun; 78(6):2449-2466. PubMed ID: 35306733 [TBL] [Abstract][Full Text] [Related]
11. Unmanned Aerial System-Based Weed Mapping in Sod Production Using a Convolutional Neural Network. Zhang J; Maleski J; Jespersen D; Waltz FC; Rains G; Schwartz B Front Plant Sci; 2021; 12():702626. PubMed ID: 34899768 [TBL] [Abstract][Full Text] [Related]
12. Detection of broadleaf weeds growing in turfgrass with convolutional neural networks. Yu J; Sharpe SM; Schumann AW; Boyd NS Pest Manag Sci; 2019 Aug; 75(8):2211-2218. PubMed ID: 30672096 [TBL] [Abstract][Full Text] [Related]
13. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Wang G; Lan Y; Qi H; Chen P; Hewitt A; Han Y Pest Manag Sci; 2019 Jun; 75(6):1546-1555. PubMed ID: 30620130 [TBL] [Abstract][Full Text] [Related]
14. Study on droplet deposition characteristics and application of small and medium crown garden plants sprayed by UAV sprayer. Gao J; Bo P; Lan Y; Sun L; Liu H; Li X; Wang G; Wang H Front Plant Sci; 2024; 15():1343793. PubMed ID: 38828225 [TBL] [Abstract][Full Text] [Related]
15. A Multi-Robot Sense-Act Approach to Lead to a Proper Acting in Environmental Incidents. Conesa-Muñoz J; Valente J; Del Cerro J; Barrientos A; Ribeiro A Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27517934 [TBL] [Abstract][Full Text] [Related]
16. Towards reducing chemical usage for weed control in agriculture using UAS imagery analysis and computer vision techniques. Sapkota R; Stenger J; Ostlie M; Flores P Sci Rep; 2023 Apr; 13(1):6548. PubMed ID: 37085558 [TBL] [Abstract][Full Text] [Related]
17. A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images. Bouguettaya A; Zarzour H; Kechida A; Taberkit AM Cluster Comput; 2023; 26(2):1297-1317. PubMed ID: 35968221 [TBL] [Abstract][Full Text] [Related]
18. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Wang G; Han Y; Li X; Andaloro J; Chen P; Hoffmann WC; Han X; Chen S; Lan Y Sci Total Environ; 2020 Oct; 737():139793. PubMed ID: 32526578 [TBL] [Abstract][Full Text] [Related]
19. Agronomic and Technical Evaluation of Herbicide Spot Spraying in Maize Based on High-Resolution Aerial Weed Maps-An On-Farm Trial. Allmendinger A; Spaeth M; Saile M; Peteinatos GG; Gerhards R Plants (Basel); 2024 Aug; 13(15):. PubMed ID: 39124282 [TBL] [Abstract][Full Text] [Related]
20. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]