BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34203489)

  • 81. HIF-1α promotes bone marrow stromal cell migration to the injury site and enhances functional recovery after spinal cord injury in rats.
    Han X; Chen Y; Liu Y; Wang Z; Tang G; Tian W
    J Gene Med; 2018 Dec; 20(12):e3062. PubMed ID: 30414229
    [TBL] [Abstract][Full Text] [Related]  

  • 82. [Effects of human urine-derived stem cells combined with chondroitinase ABC on the expressions of nerve growth factor and brain-derived neurotrophic factor in the spinal cord injury].
    Li Z; Wu H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2017 Nov; 31(11):1377-1383. PubMed ID: 29798595
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Transplantation of human urine-derived neural progenitor cells after spinal cord injury in rats.
    Liu A; Kang S; Yu P; Shi L; Zhou L
    Neurosci Lett; 2020 Sep; 735():135201. PubMed ID: 32585253
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Effects of brain-derived neurotrophic factor (BDNF) on compression-induced spinal cord injury: BDNF attenuates down-regulation of superoxide dismutase expression and promotes up-regulation of myelin basic protein expression.
    Ikeda O; Murakami M; Ino H; Yamazaki M; Koda M; Nakayama C; Moriya H
    J Neuropathol Exp Neurol; 2002 Feb; 61(2):142-53. PubMed ID: 11853017
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Regulatory effects of intermittent noxious stimulation on spinal cord injury-sensitive microRNAs and their presumptive targets following spinal cord contusion.
    Strickland ER; Woller SA; Garraway SM; Hook MA; Grau JW; Miranda RC
    Front Neural Circuits; 2014; 8():117. PubMed ID: 25278846
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Identification of key genes involved in neural regeneration and the repairing effect of BDNF-overexpressed BMSCs on spinal cord ischemia-reperfusion injury in rats.
    Yin F; Liu Z; Zhang D; Shen Z; Niu Z; Guo L
    Biomed Pharmacother; 2023 Apr; 160():114293. PubMed ID: 36736275
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Neurotrophin expression in neural stem cells grafted acutely to transected spinal cord of adult rats linked to functional improvement.
    Gu YL; Yin LW; Zhang Z; Liu J; Liu SJ; Zhang LF; Wang TH
    Cell Mol Neurobiol; 2012 Oct; 32(7):1089-97. PubMed ID: 22573254
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Long-Term Effects of Neural Precursor Cell Transplantation on Secondary Injury Processes and Functional Recovery after Severe Cervical Contusion-Compression Spinal Cord Injury.
    Younsi A; Zheng G; Riemann L; Scherer M; Zhang H; Tail M; Hatami M; Skutella T; Unterberg A; Zweckberger K
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884911
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Intracerebral Transplantation of BDNF-overexpressing Human Neural Stem Cells (HB1.F3.BDNF) Promotes Migration, Differentiation and Functional Recovery in a Rodent Model of Huntington's Disease.
    Kim HS; Jeon I; Noh JE; Lee H; Hong KS; Lee N; Pei Z; Song J
    Exp Neurobiol; 2020 Apr; 29(2):130-137. PubMed ID: 32408403
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Human dental stem cells of the apical papilla associated to BDNF-loaded pharmacologically active microcarriers (PAMs) enhance locomotor function after spinal cord injury.
    Kandalam S; De Berdt P; Ucakar B; Vanvarenberg K; Bouzin C; Gratpain V; Diogenes A; Montero-Menei CN; des Rieux A
    Int J Pharm; 2020 Sep; 587():119685. PubMed ID: 32712253
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord.
    González SL; Labombarda F; González Deniselle MC; Guennoun R; Schumacher M; De Nicola AF
    Neuroscience; 2004; 125(3):605-14. PubMed ID: 15099674
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Transplantation of PSA-NCAM-Positive Neural Precursors from Human Embryonic Stem Cells Promotes Functional Recovery in an Animal Model of Spinal Cord Injury.
    Kim DH; Cho HJ; Park CY; Cho MS; Kim DW
    Tissue Eng Regen Med; 2022 Dec; 19(6):1349-1358. PubMed ID: 36036887
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats.
    Nishio Y; Koda M; Kamada T; Someya Y; Yoshinaga K; Okada S; Harada H; Okawa A; Moriya H; Yamazaki M
    J Neurosurg Spine; 2006 Nov; 5(5):424-33. PubMed ID: 17120892
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Brain-derived neurotrophic factor stimulates hindlimb stepping and sprouting of cholinergic fibers after spinal cord injury.
    Jakeman LB; Wei P; Guan Z; Stokes BT
    Exp Neurol; 1998 Nov; 154(1):170-84. PubMed ID: 9875278
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody.
    Han Q; Jin W; Xiao Z; Ni H; Wang J; Kong J; Wu J; Liang W; Chen L; Zhao Y; Chen B; Dai J
    Biomaterials; 2010 Dec; 31(35):9212-20. PubMed ID: 20869112
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Quercetin reduces neural tissue damage and promotes astrocyte activation after spinal cord injury in rats.
    Wang Y; Li W; Wang M; Lin C; Li G; Zhou X; Luo J; Jin D
    J Cell Biochem; 2018 Feb; 119(2):2298-2306. PubMed ID: 28865131
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model.
    Lee HJ; Lim IJ; Lee MC; Kim SU
    J Neurosci Res; 2010 Nov; 88(15):3282-94. PubMed ID: 20818776
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Intranasal delivery of bone marrow stromal cells to spinal cord lesions.
    Ninomiya K; Iwatsuki K; Ohnishi Y; Ohkawa T; Yoshimine T
    J Neurosurg Spine; 2015 Jul; 23(1):111-9. PubMed ID: 25840039
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Bone marrow-derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: comparative study between intralesional and intravenous transplantation.
    Kim JW; Ha KY; Molon JN; Kim YH
    Spine (Phila Pa 1976); 2013 Aug; 38(17):E1065-74. PubMed ID: 23629485
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells.
    Cao Q; Xu XM; Devries WH; Enzmann GU; Ping P; Tsoulfas P; Wood PM; Bunge MB; Whittemore SR
    J Neurosci; 2005 Jul; 25(30):6947-57. PubMed ID: 16049170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.