These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34203840)

  • 1. Comprehensive Thermal Analysis of Diamond in a High-Power Raman Cavity Based on FVM-FEM Coupled Method.
    Bai Z; Zhang Z; Wang K; Gao J; Zhang Z; Yang X; Wang Y; Lu Z; Mildren RP
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34203840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping.
    Williams RJ; Kitzler O; McKay A; Mildren RP
    Opt Lett; 2014 Jul; 39(14):4152-5. PubMed ID: 25121674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1.2  kW quasi-steady-state diamond Raman laser pumped by an M
    Antipov S; Sabella A; Williams RJ; Kitzler O; Spence DJ; Mildren RP
    Opt Lett; 2019 May; 44(10):2506-2509. PubMed ID: 31090718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1.6 W continuous-wave Raman laser using low-loss synthetic diamond.
    Lubeigt W; Savitski VG; Bonner GM; Geoghegan SL; Friel I; Hastie JE; Dawson MD; Burns D; Kemp AJ
    Opt Express; 2011 Mar; 19(7):6938-44. PubMed ID: 21451719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement.
    Bai Z; Williams RJ; Kitzler O; Sarang S; Spence DJ; Mildren RP
    Opt Express; 2018 Aug; 26(16):19797-19803. PubMed ID: 30119299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond.
    Williams RJ; Spence DJ; Lux O; Mildren RP
    Opt Express; 2017 Jan; 25(2):749-757. PubMed ID: 28157963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion.
    Bai Z; Williams RJ; Jasbeer H; Sarang S; Kitzler O; Mckay A; Mildren RP
    Opt Lett; 2018 Feb; 43(3):563-566. PubMed ID: 29400841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High average power diamond Raman laser.
    Feve JP; Shortoff KE; Bohn MJ; Brasseur JK
    Opt Express; 2011 Jan; 19(2):913-22. PubMed ID: 21263631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling and optimization of continuous-wave external cavity Raman lasers.
    Kitzler O; McKay A; Spence DJ; Mildren RP
    Opt Express; 2015 Apr; 23(7):8590-602. PubMed ID: 25968697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power.
    Antipov S; Williams RJ; Sabella A; Kitzler O; Berhane A; Spence DJ; Mildren RP
    Opt Express; 2020 May; 28(10):15232-15239. PubMed ID: 32403554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable continuous-wave diamond Raman laser.
    Parrotta DC; Kemp AJ; Dawson MD; Hastie JE
    Opt Express; 2011 Nov; 19(24):24165-70. PubMed ID: 22109443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient conversion of a 1.064 μm Nd:YAG laser to the eye-safe region using a diamond Raman laser.
    Sabella A; Piper JA; Mildren RP
    Opt Express; 2011 Nov; 19(23):23554-60. PubMed ID: 22109234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.
    Cheng Z; Bougher T; Bai T; Wang SY; Li C; Yates L; Foley BM; Goorsky M; Cola BA; Faili F; Graham S
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4808-4815. PubMed ID: 29328632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An intra-cavity Raman laser using synthetic single-crystal diamond.
    Lubeigt W; Bonner GM; Hastie JE; Dawson MD; Burns D; Kemp AJ
    Opt Express; 2010 Aug; 18(16):16765-70. PubMed ID: 20721067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous-wave cascaded second Stokes diamond Raman laser at 1477  nm.
    Heinzig M; Palma-Vega G; Yildiz B; Walbaum T; Schreiber T; Tünnermann A
    Opt Lett; 2021 Mar; 46(5):1133-1136. PubMed ID: 33649675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High power tungstate-crystal Raman laser operating in the strong thermal lensing regime.
    McKay A; Kitzler O; Mildren RP
    Opt Express; 2014 Jan; 22(1):707-15. PubMed ID: 24515030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength diversification of high-power external cavity diamond Raman lasers using intracavity harmonic generation.
    Jasbeer H; Williams RJ; Kitzler O; McKay A; Mildren RP
    Opt Express; 2018 Jan; 26(2):1930-1941. PubMed ID: 29401914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 100 kW peak power external cavity diamond Raman laser at 2.52 μm.
    Demetriou G; Kemp AJ; Savitski V
    Opt Express; 2019 Apr; 27(7):10296-10303. PubMed ID: 31045173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser.
    Kitzler O; McKay A; Mildren RP
    Opt Lett; 2012 Jul; 37(14):2790-2. PubMed ID: 22825135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-band pumping of Tm:LiYF
    Loiko P; Thouroude R; Soulard R; Guillemot L; Brasse G; Guichardaz B; Braud A; Hideur A; Laroche M; Gilles H; Camy P
    Opt Lett; 2019 Jun; 44(12):3010-3013. PubMed ID: 31199368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.