These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 34204269)
41. Metastable CrMnNi steels processed by laser powder bed fusion: experimental assessment of elementary mechanisms contributing to microstructure, properties and residual stress. Richter J; Bartzsch G; Scherbring S; Bolender A; Vollmer M; Mola J; Volkova O; Niendorf T Sci Rep; 2022 Dec; 12(1):21862. PubMed ID: 36529751 [TBL] [Abstract][Full Text] [Related]
42. Correlation of Lack of Fusion Pores with Stress Corrosion Cracking Susceptibility of L-PBF 316L: Effect of Surface Residual Stresses. Yazdanpanah A; Franceschi M; Rebesan P; Dabalà M Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295220 [TBL] [Abstract][Full Text] [Related]
43. Additive Manufacturing of AlSi10Mg and Ti6Al4V Lightweight Alloys via Laser Powder Bed Fusion: A Review of Heat Treatments Effects. Ghio E; Cerri E Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329496 [TBL] [Abstract][Full Text] [Related]
44. Advances in Laser Powder Bed Fusion of Tungsten, Tungsten Alloys, and Tungsten-Based Composites. Li H; Shen Y; Wu X; Wang D; Yang Y Micromachines (Basel); 2024 Jul; 15(8):. PubMed ID: 39203618 [TBL] [Abstract][Full Text] [Related]
45. Preliminary Characterization of Glass/Alumina Composite Using Laser Powder Bed Fusion (L-PBF) Additive Manufacturing. Bae BH; Lee JW; Cha JM; Kim IW; Jung HD; Yoon CB Materials (Basel); 2020 May; 13(9):. PubMed ID: 32392713 [TBL] [Abstract][Full Text] [Related]
46. Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics. Quinn P; Uí Mhurchadha SM; Lawlor J; Raghavendra R Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806831 [TBL] [Abstract][Full Text] [Related]
47. Static and Dynamic Mechanical Behaviour of Hybrid-PBF-LB/M-Built and Hot Isostatic Pressed Lattice Structures. Sommer D; Esen C; Hellmann R Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176438 [TBL] [Abstract][Full Text] [Related]
48. Fabrication and performance of Zinc-based biodegradable metals: From conventional processes to laser powder bed fusion. Liu A; Qin Y; Dai J; Song F; Tian Y; Zheng Y; Wen P Bioact Mater; 2024 Nov; 41():312-335. PubMed ID: 39161793 [TBL] [Abstract][Full Text] [Related]
49. A Comparative Study on Laser Powder Bed Fusion of Differently Atomized 316L Stainless Steel. Grzelak K; Bielecki M; Kluczyński J; Szachogłuchowicz I; Śnieżek L; Torzewski J; Łuszczek J; Słoboda Ł; Wachowski M; Komorek Z; Małek M; Zygmuntowicz J Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888403 [TBL] [Abstract][Full Text] [Related]
50. Mechanical Properties and Interfacial Characterization of Additive-Manufactured CuZrCr/CoCrMo Multi-Metals Fabricated by Powder Bed Fusion Using Pulsed Wave Laser. Zhang H; Jin X; Xiao Z; Yao L Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930735 [TBL] [Abstract][Full Text] [Related]
51. Novel Pectin Binder for Satelliting Carbides to H13 Tool Steel for PBF-LB Processing. Meyer F; Kolodzy F; Scheck ML; Kaletsch A; Kharandiuk T; Pich A; Broeckmann C Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241274 [TBL] [Abstract][Full Text] [Related]
52. Effects of process parameters on the mechanical properties of additively manufactured Zr-1Mo alloy builds. Sun X; Liu D; Zhou W; Nomura N; Tsutsumi Y; Hanawa T J Mech Behav Biomed Mater; 2020 Apr; 104():103655. PubMed ID: 32174412 [TBL] [Abstract][Full Text] [Related]
53. Mechanical properties of diamond lattice Ti-6Al-4V structures produced by laser powder bed fusion: On the effect of the load direction. Cutolo A; Engelen B; Desmet W; Van Hooreweder B J Mech Behav Biomed Mater; 2020 Apr; 104():103656. PubMed ID: 32174413 [TBL] [Abstract][Full Text] [Related]
54. Additive Manufacturing of Polypropylene: A Screening Design of Experiment Using Laser-Based Powder Bed Fusion. Flores Ituarte I; Wiikinkoski O; Jansson A Polymers (Basel); 2018 Nov; 10(12):. PubMed ID: 30961218 [TBL] [Abstract][Full Text] [Related]
55. 17-4 PH Steel Parts Obtained through MEX and PBF-LB/M Technologies: Comparison of the Structural Properties. Jasik K; Śnieżek L; Kluczyński J; Łuszczek J; Grzelak K; Sarzyński B; Szachogłuchowicz I Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930170 [TBL] [Abstract][Full Text] [Related]
56. An Empirical Approach for the Development of Process Parameters for Laser Powder Bed Fusion. Pfaff A; Jäcklein M; Schlager M; Harwick W; Hoschke K; Balle F Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33261091 [TBL] [Abstract][Full Text] [Related]
57. Fiber Laser Alloying of Additively Manufactured 18Ni-300 Maraging Steel Part Surface: Effect of Processing Parameters on the Formation of Alloyed Surface Layer and Its Properties. Škamat J; Bučelis K; Černašėjus O; Indrišiūnas S Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445046 [TBL] [Abstract][Full Text] [Related]
58. Additive Manufacturing of CrFeNiTi Multi-Principal Element Alloys. Reiberg M; Hitzler L; Apfelbacher L; Schanz J; Kolb D; Riegel H; Werner E Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431376 [TBL] [Abstract][Full Text] [Related]
59. Additive manufacturing of multi-material parts - Design guidelines for manufacturing of 316L/CuCrZr in laser powder bed fusion. Meyer I; Oel M; Ehlers T; Lachmayer R Heliyon; 2023 Aug; 9(8):e18301. PubMed ID: 37554810 [TBL] [Abstract][Full Text] [Related]
60. Investigation of an Increased Particle Size Distribution of Ti-6Al-4V Powders Used for Laser-Based Powder Bed Fusion of Metals. Ludwig I; Kluge M Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930313 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]