These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34204399)

  • 1. Magnetic Control of Optical Reflectance from Metallic Thin Film Using Surface Plasmon Resonance and Faraday Rotation.
    Son C; Ju H
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver nanoparticles-based localized surface plasmon resonance biosensor for Escherichia coli detection.
    Mahmudin L; Wulandani R; Riswan M; Kurnia Sari E; Dwi Jayanti P; Syahrul Ulum M; Arifin M; Suharyadi E
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 311():123985. PubMed ID: 38316074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation.
    Chin JY; Steinle T; Wehlus T; Dregely D; Weiss T; Belotelov VI; Stritzker B; Giessen H
    Nat Commun; 2013; 4():1599. PubMed ID: 23511464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals.
    Jain PK; Xiao Y; Walsworth R; Cohen AE
    Nano Lett; 2009 Apr; 9(4):1644-50. PubMed ID: 19351194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Faraday effects of magneto-plasmonic crystals with plasmonic hexagonal hole arrays.
    Wang Z; Wang Z; Gao M; Kong L; Lan J; Zhao J; Long P; Kang J; Zheng X; Huang S; Li S
    Opt Express; 2022 Feb; 30(5):6700-6712. PubMed ID: 35299449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization Selectivity of the Thin-Metal-Film Plasmon-Assisted Fiber-Optic Polarizer.
    Wang X; Lin J; Sun W; Tan Z; Liu R; Wang Z
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32189-32196. PubMed ID: 32551488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced magneto-optical properties of semiconductor EuS nanocrystals assisted by surface plasmon resonance of gold nanoparticles.
    Kawashima A; Nakanishi T; Shibayama T; Watanabe S; Fujita K; Tanaka K; Koizumi H; Fushimi K; Hasegawa Y
    Chemistry; 2013 Oct; 19(43):14438-45. PubMed ID: 24105639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Faraday effect in hybrid magneto-plasmonic photonic crystals.
    Caballero B; García-Martín A; Cuevas JC
    Opt Express; 2015 Aug; 23(17):22238-49. PubMed ID: 26368196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large Faraday Rotation in Optical-Quality Phthalocyanine and Porphyrin Thin Films.
    Nelson Z; Delage-Laurin L; Peeks MD; Swager TM
    J Am Chem Soc; 2021 May; 143(18):7096-7103. PubMed ID: 33905654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the Faraday rotation of monolayer black phosphorus by the optical Tamm state at the photonic crystal interface.
    Dong D; Liu Y; Fu Y
    Appl Opt; 2020 Oct; 59(30):9607-9613. PubMed ID: 33104683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles.
    Liu Q; Zheng X; He J; Wang W; Fu M; Cao Y; Li H; Wu Y; Chen T; Zhang C; Chen X; Yu B; Li S; Kang J; Wu Z
    Sci Rep; 2016 Jul; 6():29170. PubMed ID: 27403716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-doped ZnO thin film for development of magnetic field sensor based on surface plasmon resonance.
    Jindal K; Tomar M; Katiyar RS; Gupta V
    Opt Lett; 2013 Sep; 38(18):3542-5. PubMed ID: 24104809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.
    Kuzmin DA; Bychkov IV; Shavrov VG; Temnov VV
    Nano Lett; 2016 Jul; 16(7):4391-5. PubMed ID: 27348746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linearity of the Faraday-rotation-type ac magnetic-field sensor with a ferrimagnetic or ferromagnetic rotator film.
    Mori H; Asahara Y
    Appl Opt; 1996 Mar; 35(7):1083-7. PubMed ID: 21085218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Faraday rotation enhancement of gold coated Fe2O3 nanoparticles: comparison of experiment and theory.
    Dani RK; Wang H; Bossmann SH; Wysin G; Chikan V
    J Chem Phys; 2011 Dec; 135(22):224502. PubMed ID: 22168698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Giant Faraday rotation in atomically thin semiconductors.
    Carey B; Wessling NK; Steeger P; Schmidt R; Michaelis de Vasconcellos S; Bratschitsch R; Arora A
    Nat Commun; 2024 Apr; 15(1):3082. PubMed ID: 38600090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetically tunable surface plasmon resonance based on a composite consisting of noble metal nanoparticles and a ferromagnetic thin film.
    Wei CM; Chen CW; Wang CH; Chen JY; Chen YC; Chen YF
    Opt Lett; 2011 Feb; 36(4):514-6. PubMed ID: 21326440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Tuning of Plasmon Damping via Light Induced Magnetism.
    Cheng OH; Zhao B; Brawley Z; Son DH; Sheldon MT
    Nano Lett; 2022 Jul; 22(13):5120-5126. PubMed ID: 35759697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bound states in the continuum enable modulation of light intensity in the Faraday configuration.
    Ignatyeva DO; Belotelov VI
    Opt Lett; 2020 Dec; 45(23):6422-6425. PubMed ID: 33258827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity enhancement of magneto-optical Faraday effect immunoassay method based on biofunctionalized γ-Fe
    Chen KL; Tsai PH; Lin CW; Chen JM; Lin YJ; Kumar P; Jeng CC; Wu CH; Wang LM; Tsao HM
    Nanomedicine; 2022 Nov; 46():102601. PubMed ID: 36089233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.