These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34204765)

  • 21. Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate.
    Wang ZL; Yan JM; Wang HL; Ping Y; Jiang Q
    Sci Rep; 2012; 2():598. PubMed ID: 22953041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On-demand hydrogen production from formic acid by light-active dinuclear iridium catalysts.
    Sofue Y; Nomura K; Inagaki A
    Chem Commun (Camb); 2020 Apr; 56(33):4519-4522. PubMed ID: 32219239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly Stable Single-Atom Catalyst with Ionic Pd Active Sites Supported on N-Doped Carbon Nanotubes for Formic Acid Decomposition.
    Podyacheva OY; Bulushev DA; Suboch AN; Svintsitskiy DA; Lisitsyn AS; Modin E; Chuvilin A; Gerasimov EY; Sobolev VI; Parmon VN
    ChemSusChem; 2018 Nov; 11(21):3724-3727. PubMed ID: 30175551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A prolific catalyst for dehydrogenation of neat formic acid.
    Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ
    Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved hydrogen production from formic acid on a Pd/C catalyst doped by potassium.
    Bulushev DA; Jia L; Beloshapkin S; Ross JR
    Chem Commun (Camb); 2012 May; 48(35):4184-6. PubMed ID: 22447125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unraveling the Role of Formic Acid and the Type of Solvent in the Catalytic Conversion of Lignin: A Holistic Approach.
    Oregui-Bengoechea M; Gandarias I; Arias PL; Barth T
    ChemSusChem; 2017 Feb; 10(4):754-766. PubMed ID: 27925410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced catalytic activity over palladium supported on ZrO
    Wang T; Li F; An H; Xue W; Wang Y
    RSC Adv; 2019 Jan; 9(6):3359-3366. PubMed ID: 35518976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen Production and Storage on a Formic Acid/Bicarbonate Platform using Water-Soluble N-Heterocyclic Carbene Complexes of Late Transition Metals.
    Jantke D; Pardatscher L; Drees M; Cokoja M; Herrmann WA; Kühn FE
    ChemSusChem; 2016 Oct; 9(19):2849-2854. PubMed ID: 27618800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid.
    Iguchi M; Himeda Y; Manaka Y; Kawanami H
    ChemSusChem; 2016 Oct; 9(19):2749-2753. PubMed ID: 27530918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.
    Savourey S; Lefèvre G; Berthet JC; Thuéry P; Genre C; Cantat T
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10466-70. PubMed ID: 25088282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Steam reforming of tar model compound using Pd catalyst on alumina tube.
    Nisamaneenate J; Atong D; Sricharoenchaikul V
    Environ Technol; 2012 Dec; 33(22-24):2497-505. PubMed ID: 23437646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assembled Organoruthenium(II) for Formaldehyde Decomposition and Hydrogen Production.
    Shen Y; Xu Y; Zhan Y
    Chemphyschem; 2023 Apr; 24(7):e202200695. PubMed ID: 36456526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions.
    Omae I
    Curr Org Chem; 2016 Apr; 20(9):953-962. PubMed ID: 28503084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient production of hydrogen from formic acid using a covalent triazine framework supported molecular catalyst.
    Bavykina AV; Goesten MG; Kapteijn F; Makkee M; Gascon J
    ChemSusChem; 2015 Mar; 8(5):809-12. PubMed ID: 25677344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study.
    Fellay C; Yan N; Dyson PJ; Laurenczy G
    Chemistry; 2009; 15(15):3752-60. PubMed ID: 19229942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution.
    Fukuzumi S; Kobayashi T; Suenobu T
    ChemSusChem; 2008; 1(10):827-34. PubMed ID: 18846597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formic acid dehydrogenation with bioinspired iridium complexes: a kinetic isotope effect study and mechanistic insight.
    Wang WH; Xu S; Manaka Y; Suna Y; Kambayashi H; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2014 Jul; 7(7):1976-83. PubMed ID: 24840600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of Isocyanic Acid from Nitric Oxide over Palladium and Iridium Catalysts.
    Voorhoeve RJ; Trimble LE
    Science; 1978 Nov; 202(4367):525-6. PubMed ID: 17813492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superior activity of Pd nanoparticles confined in carbon nanotubes for hydrogen production from formic acid decomposition at ambient temperature.
    Ding TY; Zhao ZG; Ran MF; Yang YY
    J Colloid Interface Sci; 2019 Mar; 538():474-480. PubMed ID: 30537660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.