These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 34204853)

  • 21. Enzyme-based optical biosensors for organophosphate class of pesticide detection.
    Kaur J; Singh PK
    Phys Chem Chem Phys; 2020 Jul; 22(27):15105-15119. PubMed ID: 32613964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wearable sensors made with solution-blow spinning poly(lactic acid) for non-enzymatic pesticide detection in agriculture and food safety.
    Paschoalin RT; Gomes NO; Almeida GF; Bilatto S; Farinas CS; Machado SAS; Mattoso LHC; Oliveira ON; Raymundo-Pereira PA
    Biosens Bioelectron; 2022 Mar; 199():113875. PubMed ID: 34922318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gold nanoparticle-based colorimetric and electrochemical sensors for the detection of illegal food additives.
    Li L; Zhang M; Chen W
    J Food Drug Anal; 2020 Dec; 28(4):641-653. PubMed ID: 35696145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insecticide discovery-"Chance favors the prepared mind".
    Sparks TC; Lorsbach BA
    Pestic Biochem Physiol; 2023 May; 192():105412. PubMed ID: 37105622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors.
    Cao Y; Feng T; Xu J; Xue C
    Biosens Bioelectron; 2019 Sep; 141():111447. PubMed ID: 31238279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling global distribution of agricultural insecticides in surface waters.
    Ippolito A; Kattwinkel M; Rasmussen JJ; Schäfer RB; Fornaroli R; Liess M
    Environ Pollut; 2015 Mar; 198():54-60. PubMed ID: 25555206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Western flower thrips resistance to insecticides: detection, mechanisms and management strategies.
    Gao Y; Lei Z; Reitz SR
    Pest Manag Sci; 2012 Aug; 68(8):1111-21. PubMed ID: 22566175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. If you see one, have you seen them all?: Community-wide effects of insecticide cross-resistance in zooplankton populations near and far from agriculture.
    Bendis RJ; Relyea RA
    Environ Pollut; 2016 Aug; 215():234-246. PubMed ID: 27208756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review.
    Sun Y; Waterhouse GIN; Qiao X; Xiao J; Xu Z
    Food Chem; 2023 Jun; 410():135434. PubMed ID: 36641911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water.
    Wang J; Qiu H; Shen H; Pan J; Dai X; Yan Y; Pan G; Sellergren B
    Biosens Bioelectron; 2016 Nov; 85():387-394. PubMed ID: 27208472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LSPR immuno-sensing based on iso-Y nanopillars for highly sensitive and specific imidacloprid detection.
    Vestri A; Rippa M; Marchesano V; Sagnelli D; Margheri G; Zhou J; Petti L
    J Mater Chem B; 2021 Nov; 9(44):9153-9161. PubMed ID: 34694310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Writing Sensors on Solid Agricultural Products for In Situ Detection.
    Tang W; Wu J; Ying Y; Liu Y
    Anal Chem; 2015 Nov; 87(21):10703-7. PubMed ID: 26455570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parameter validation of analytical methods of insecticide residue analyses in foods of animal origin, feed and water.
    Debebe A; Kuttalam S
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):571-5. PubMed ID: 21528426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of Environment-Friendly Insecticides Based on Enantioselectivity: Bifenthrin as a Case.
    Qian Y; Zhou P; Zhang Q
    Curr Protein Pept Sci; 2017; 18(1):10-14. PubMed ID: 27097722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel potentiometric sensors for the determination of the dinotefuran insecticide residue levels in cucumber and soil samples.
    Abdel-Ghany MF; Hussein LA; El Azab NF
    Talanta; 2017 Mar; 164():518-528. PubMed ID: 28107966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNAzyme-based biosensors for mercury (Ⅱ) detection: Rational construction, advances and perspectives.
    Cheng Z; Wei J; Gu L; Zou L; Wang T; Chen L; Li Y; Yang Y; Li P
    J Hazard Mater; 2022 Jun; 431():128606. PubMed ID: 35278952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The new age of insecticide discovery-the crop protection industry and the impact of natural products.
    Sparks TC; Wessels FJ; Lorsbach BA; Nugent BM; Watson GB
    Pestic Biochem Physiol; 2019 Nov; 161():12-22. PubMed ID: 31685191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly sensitive and specific detection of neonicotinoid insecticide imidacloprid in environmental and food samples by a polyclonal antibody-based enzyme-linked immunosorbent assay.
    Wang R; Wang Z; Yang H; Wang Y; Deng A
    J Sci Food Agric; 2012 Apr; 92(6):1253-60. PubMed ID: 22083888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determinants of children's exposure to pyrethroid insecticides in western France.
    Glorennec P; Serrano T; Fravallo M; Warembourg C; Monfort C; Cordier S; Viel JF; Le Gléau F; Le Bot B; Chevrier C
    Environ Int; 2017 Jul; 104():76-82. PubMed ID: 28453973
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.