These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34205101)
1. Experimental and Modelling of Alkali-Activated Mortar Compressive Strength Using Hybrid Support Vector Regression and Genetic Algorithm. Al-Sodani KAA; Adewumi AA; Mohd Ariffin MA; Maslehuddin M; Ismail M; Salami HO; Owolabi TO; Mohamed HD Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34205101 [TBL] [Abstract][Full Text] [Related]
2. On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance. Wan Z; Xu Y; Šavija B Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33546376 [TBL] [Abstract][Full Text] [Related]
3. A Novel Forecasting Approach by the GA-SVR-GRNN Hybrid Deep Learning Algorithm for Oil Future Prices. Wang L; Xia Y; Lu Y Comput Intell Neurosci; 2022; 2022():4952215. PubMed ID: 36045986 [TBL] [Abstract][Full Text] [Related]
4. Assessment of Soft Computing Techniques for the Prediction of Compressive Strength of Bacterial Concrete. Almohammed F; Sihag P; Sammen SS; Ostrowski KA; Singh K; Prasad CVSR; Zajdel P Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057207 [TBL] [Abstract][Full Text] [Related]
5. Predicting Blast-Induced Ground Vibration in Open-Pit Mines Using Vibration Sensors and Support Vector Regression-Based Optimization Algorithms. Nguyen H; Choi Y; Bui XN; Nguyen-Thoi T Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878226 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of various machine learning algorithms to predict strength properties of sustainable green concrete containing waste foundry sand. Javed MF; Khan M; Fawad M; Alabduljabbar H; Najeh T; Gamil Y Sci Rep; 2024 Jun; 14(1):14617. PubMed ID: 38918460 [TBL] [Abstract][Full Text] [Related]
7. Prediction of HPC compressive strength based on machine learning. Jin L; Duan J; Jin Y; Xue P; Zhou P Sci Rep; 2024 Jul; 14(1):16776. PubMed ID: 39039187 [TBL] [Abstract][Full Text] [Related]
8. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment. Latif SD Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396 [TBL] [Abstract][Full Text] [Related]
9. Metaheuristic Prediction of the Compressive Strength of Environmentally Friendly Concrete Modified with Eggshell Powder Using the Hybrid ANN-SFL Optimization Algorithm. Tosee SVR; Faridmehr I; Bedon C; Sadowski Ł; Aalimahmoody N; Nikoo M; Nowobilski T Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683782 [TBL] [Abstract][Full Text] [Related]
10. Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning. Kovačević M; Lozančić S; Nyarko EK; Hadzima-Nyarko M Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361540 [TBL] [Abstract][Full Text] [Related]
11. Monthly evapotranspiration estimation using optimal climatic parameters: efficacy of hybrid support vector regression integrated with whale optimization algorithm. Tikhamarine Y; Malik A; Pandey K; Sammen SS; Souag-Gamane D; Heddam S; Kisi O Environ Monit Assess; 2020 Oct; 192(11):696. PubMed ID: 33040211 [TBL] [Abstract][Full Text] [Related]
12. Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration. Tikhamarine Y; Malik A; Souag-Gamane D; Kisi O Environ Sci Pollut Res Int; 2020 Aug; 27(24):30001-30019. PubMed ID: 32445152 [TBL] [Abstract][Full Text] [Related]
13. Modeling Superconducting Critical Temperature of 122-Iron-Based Pnictide Intermetallic Superconductor Using a Hybrid Intelligent Computational Method. Akomolafe O; Owolabi TO; Abd Rahman MA; Awang Kechik MM; Yasin MNM; Souiyah M Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443126 [TBL] [Abstract][Full Text] [Related]
14. Prediction of the compressive strength of high-performance self-compacting concrete by an ultrasonic-rebound method based on a GA-BP neural network. Du G; Bu L; Hou Q; Zhou J; Lu B PLoS One; 2021; 16(5):e0250795. PubMed ID: 33939736 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning Techniques for Evaluating Concrete Strength with Waste Marble Powder. Sharma N; Thakur MS; Sihag P; Malik MA; Kumar R; Abbas M; Saleel CA Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079194 [TBL] [Abstract][Full Text] [Related]
16. Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques. Li Y; Zhang Q; Kamiński P; Deifalla AF; Sufian M; Dyczko A; Kahla NB; Atig M Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744270 [TBL] [Abstract][Full Text] [Related]
17. Developing a boosted decision tree regression prediction model as a sustainable tool for compressive strength of environmentally friendly concrete. Latif SD Environ Sci Pollut Res Int; 2021 Dec; 28(46):65935-65944. PubMed ID: 34327638 [TBL] [Abstract][Full Text] [Related]
18. Natural gas spot price prediction research under the background of Russia-Ukraine conflict - based on FS-GA-SVR hybrid model. Zheng Y; Luo J; Chen J; Chen Z; Shang P J Environ Manage; 2023 Oct; 344():118446. PubMed ID: 37352627 [TBL] [Abstract][Full Text] [Related]
19. Prediction of slope failure in open-pit mines using a novel hybrid artificial intelligence model based on decision tree and evolution algorithm. Bui XN; Nguyen H; Choi Y; Nguyen-Thoi T; Zhou J; Dou J Sci Rep; 2020 Jun; 10(1):9939. PubMed ID: 32555284 [TBL] [Abstract][Full Text] [Related]
20. Splitting tensile strength prediction of sustainable high-performance concrete using machine learning techniques. Wu Y; Zhou Y Environ Sci Pollut Res Int; 2022 Dec; 29(59):89198-89209. PubMed ID: 35849229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]