These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34205127)

  • 1. Using a Retro-Reflective Membrane and Laser Doppler Vibrometer for Real-Time Remote Acoustic Sensing and Control.
    Xiao T; Zhao S; Qiu X; Halkon B
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-broadband local active noise control with remote acoustic sensing.
    Xiao T; Qiu X; Halkon B
    Sci Rep; 2020 Nov; 10(1):20784. PubMed ID: 33247208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time acquisition and enhancement of remote acoustic signals by a free-space monostatic homodyne laser Doppler vibrometer.
    Zhi Y; Zou Y; Tian K; Sun J
    Appl Opt; 2023 Jan; 62(2):298-313. PubMed ID: 36630228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Vibrations of the human tympanic membrane measured with Laser Doppler Vibrometer].
    Szymański M; Rusinek R; Zadrozniak M; Warmiński J; Morshed K
    Otolaryngol Pol; 2009; 63(2):182-5. PubMed ID: 19681493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Five-channel fiber-based laser Doppler vibrometer for underwater acoustic field measurement.
    Shang J; Liu Y; Sun J; Kim DW; Chen W; He Y
    Appl Opt; 2020 Jan; 59(3):676-682. PubMed ID: 32225194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic Doppler velocity measurement system using capacitive micromachined ultrasound transducer array technology.
    Shin M; Krause JS; DeBitetto P; White RD
    J Acoust Soc Am; 2013 Aug; 134(2):1011-20. PubMed ID: 23927100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser Doppler multi-beam differential vibration sensor based on a line-scan CMOS camera for real-time buried objects detection.
    Aranchuk V; Johnson S; Aranchuk I; Hickey C
    Opt Express; 2023 Jan; 31(1):235-247. PubMed ID: 36606963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound wave propagation on the human skull surface with bone conduction stimulation.
    Dobrev I; Sim JH; Stenfelt S; Ihrle S; Gerig R; Pfiffner F; Eiber A; Huber AM; Röösli C
    Hear Res; 2017 Nov; 355():1-13. PubMed ID: 28964568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer.
    Kitamura T; Ohtani K
    Front Psychol; 2015; 6():1682. PubMed ID: 26579054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterodyne laser Doppler vibrometers integrated on silicon-on-insulator based on serrodyne thermo-optic frequency shifters.
    Li Y; Verstuyft S; Yurtsever G; Keyvaninia S; Roelkens G; Van Thourhout D; Baets R
    Appl Opt; 2013 Apr; 52(10):2145-52. PubMed ID: 23545970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a High-Resolution All-Fiber Homodyne Laser Doppler Vibrometer.
    Shang J; He Y; Wang Q; Li Y; Ren L
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inkjet-Printed Membrane for a Capacitive Acoustic Sensor: Development and Characterization Using Laser Vibrometer.
    Haque RI; Ogam E; Benaben P; Boddaert X
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28481267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Energy Dissipation Through the Ossicular Chain and Inner Ear Using Laser Doppler Vibrometer Measurement of Round Window Velocity.
    Ryan M; Lally J; Adams JK; Higgins S; Ahmed M; Aden J; Esquivel C; Spear SA
    Otol Neurotol; 2020 Mar; 41(3):e387-e391. PubMed ID: 31821262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air- and Bone-Conducted Sources of Feedback With an Active Middle Ear Implant.
    Banakis Hartl RM; Easter JR; Alhussaini MA; Tollin DJ; Jenkins HA
    Ear Hear; 2019; 40(3):725-731. PubMed ID: 30199397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Contact Vibro-Acoustic Object Recognition Using Laser Doppler Vibrometry and Convolutional Neural Networks.
    Darwish A; Halkon B; Oberst S
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study on coherence between virtual signal and physical signals in remote acoustic sensing.
    Zhang P; Wang S; Duan H; Tao J; Zou H; Qiu X
    J Acoust Soc Am; 2022 Nov; 152(5):2840. PubMed ID: 36456288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Acoustic Sensor Based on Active Fiber Fabry-Pérot Microcavities.
    Gao XX; Cui JM; Ai MZ; Huang YF; Li CF; Guo GC
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental demonstration of remote, passive acousto-optic sensing.
    Antonelli L; Blackmon F
    J Acoust Soc Am; 2004 Dec; 116(6):3393-403. PubMed ID: 15658691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Endolymphatic Hydrops on Sound Transmission in Live Guinea Pigs Measured with a Laser Doppler Vibrometer.
    Ding CR; Xu XD; Wang XW; Jia XH; Cheng X; Liu X; Yang L; Tong BS; Chi FL; Ren DD
    Neural Plast; 2016; 2016():8648297. PubMed ID: 28090361
    [No Abstract]   [Full Text] [Related]  

  • 20. Multi-beam heterodyne laser Doppler vibrometer based on a line-scan CMOS digital camera.
    Aranchuk V; Kasu R; Li J; Aranchuk I; Hickey C
    Appl Opt; 2022 Jul; 61(20):5876-5883. PubMed ID: 36255825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.