These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34205265)

  • 21. A clinical text classification paradigm using weak supervision and deep representation.
    Wang Y; Sohn S; Liu S; Shen F; Wang L; Atkinson EJ; Amin S; Liu H
    BMC Med Inform Decis Mak; 2019 Jan; 19(1):1. PubMed ID: 30616584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IHG-MA: Inductive heterogeneous graph multi-agent reinforcement learning for multi-intersection traffic signal control.
    Yang S; Yang B; Kang Z; Deng L
    Neural Netw; 2021 Jul; 139():265-277. PubMed ID: 33838602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. POD-Enhanced Deep Learning-Based Reduced Order Models for the Real-Time Simulation of Cardiac Electrophysiology in the Left Atrium.
    Fresca S; Manzoni A; Dedè L; Quarteroni A
    Front Physiol; 2021; 12():679076. PubMed ID: 34630131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Forward Stepwise Deep Autoencoder-based Monotone Nonlinear Dimensionality Reduction Methods.
    Fong Y; Xu J
    J Comput Graph Stat; 2021; 30(3):519-529. PubMed ID: 34924737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining structured and unstructured data for predictive models: a deep learning approach.
    Zhang D; Yin C; Zeng J; Yuan X; Zhang P
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):280. PubMed ID: 33121479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Celiac disease diagnosis from videocapsule endoscopy images with residual learning and deep feature extraction.
    Wang X; Qian H; Ciaccio EJ; Lewis SK; Bhagat G; Green PH; Xu S; Huang L; Gao R; Liu Y
    Comput Methods Programs Biomed; 2020 Apr; 187():105236. PubMed ID: 31786452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. OmiEmbed: A Unified Multi-Task Deep Learning Framework for Multi-Omics Data.
    Zhang X; Xing Y; Sun K; Guo Y
    Cancers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The application of unsupervised deep learning in predictive models using electronic health records.
    Wang L; Tong L; Davis D; Arnold T; Esposito T
    BMC Med Res Methodol; 2020 Feb; 20(1):37. PubMed ID: 32101147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Learning weighted metrics to minimize nearest-neighbor classification error.
    Paredes R; Vidal E
    IEEE Trans Pattern Anal Mach Intell; 2006 Jul; 28(7):1100-10. PubMed ID: 16792099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robust Latent Regression with discriminative regularization by leveraging auxiliary knowledge.
    Tao J; Zhou D; Zhu B
    Neural Netw; 2018 May; 101():79-93. PubMed ID: 29494874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning-based design of meta-plasmonic biosensors with negative index metamaterials.
    Moon G; Choi JR; Lee C; Oh Y; Kim KH; Kim D
    Biosens Bioelectron; 2020 Sep; 164():112335. PubMed ID: 32553356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of Antioxidant Proteins With Deep Learning From Sequence Information.
    Shao L; Gao H; Liu Z; Feng J; Tang L; Lin H
    Front Pharmacol; 2018; 9():1036. PubMed ID: 30294271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation.
    Vaiyapuri T; Binbusayyis A
    PeerJ Comput Sci; 2020; 6():e327. PubMed ID: 33816977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of Machine Learning Methods for Monitoring the Health of Guyed Towers.
    Martinez Ricardo DM; Castañeda Jimenez GE; Vaqueiro Ferreira J; de Oliveira Nobrega EG; de Lima ER; de Almeida LM
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Recurrent Neural Network-Based Method for Dynamic Load Identification of Beam Structures.
    Yang H; Jiang J; Chen G; Mohamed MS; Lu F
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Learning Approach for Imputation of Missing Values in Actigraphy Data: Algorithm Development Study.
    Jang JH; Choi J; Roh HW; Son SJ; Hong CH; Kim EY; Kim TY; Yoon D
    JMIR Mhealth Uhealth; 2020 Jul; 8(7):e16113. PubMed ID: 32445459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.