These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34205472)

  • 1. Depth-Camera Based Energy Expenditure Estimation System for Physical Activity Using Posture Classification Algorithm.
    Lin BS; Lee IJ; Fahn CS; Lee YF; Chou WJ; Wu ML
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth-Camera-Based System for Estimating Energy Expenditure of Physical Activities in Gyms.
    Lin BS; Wang LY; Hwang YT; Chiang PY; Chou WJ
    IEEE J Biomed Health Inform; 2019 May; 23(3):1086-1095. PubMed ID: 29993562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posture and activity recognition and energy expenditure estimation in a wearable platform.
    Sazonov E; Hegde N; Browning RC; Melanson EL; Sazonova NA
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1339-46. PubMed ID: 26011870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CNN Model for Physical Activity Recognition and Energy Expenditure Estimation from an Eyeglass-Mounted Wearable Sensor.
    Hossain MB; LaMunion SR; Crouter SE; Melanson EL; Sazonov E
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M; Penders J; Vullers R; Amft O
    Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Energy Expenditure Estimation through Activity Classification and Walking Speed Estimation Using a Smartwatch.
    Aziz O; Zihajehzadeh S; Park A; Tae CG; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3940-3944. PubMed ID: 33018862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different prediction models for estimation of walking and running energy expenditure based on a wristwear three-axis accelerometer.
    Xu L; Zhang J; Li Z; Liu Y; Jia Z; Han X; Liu C; Zhou Z
    Front Physiol; 2023; 14():1202737. PubMed ID: 38028785
    [No Abstract]   [Full Text] [Related]  

  • 8. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure.
    Wang J; Redmond SJ; Voleno M; Narayanan MR; Wang N; Cerutti S; Lovell NH
    Physiol Meas; 2012 Nov; 33(11):1811-30. PubMed ID: 23110944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posture and activity recognition and energy expenditure prediction in a wearable platform.
    Sazonova N; Browning R; Melanson E; Sazonov E
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4163-7. PubMed ID: 25570909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models.
    Altini M; Casale P; Penders J; Amft O
    J Biomed Inform; 2015 Aug; 56():195-204. PubMed ID: 26079263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy Expenditure Estimation From Respiratory Magnetometer Plethysmography: A Comparison Study.
    Houssein A; Prioux J; Gastinger S; Martin B; Zhou F; Ge D
    IEEE J Biomed Health Inform; 2023 May; 27(5):2345-2352. PubMed ID: 37028060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing energy expenditure regression model using heart rate with reduced training time.
    Xu Z; Zong C; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6566-9. PubMed ID: 26737797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IMU-Based Energy Expenditure Estimation for Various Walking Conditions Using a Hybrid CNN-LSTM Model.
    Lee CJ; Lee JK
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Multi-Branch Two-Stage Regression Network for Accurate Energy Expenditure Estimation With ECG and IMU Data.
    Ni Z; Wu T; Wang T; Sun F; Li Y
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3224-3233. PubMed ID: 35353692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of EPOC adjustment on estimation of energy expenditure using activity monitors.
    Pribyslavska V; Caputo JL; Coons JM; Barry VW
    J Med Eng Technol; 2018 May; 42(4):265-273. PubMed ID: 29911930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prior automatic posture and activity identification improves physical activity energy expenditure prediction from hip-worn triaxial accelerometry.
    Garnotel M; Bastian T; Romero-Ugalde HM; Maire A; Dugas J; Zahariev A; Doron M; Jallon P; Charpentier G; Franc S; Blanc S; Bonnet S; Simon C
    J Appl Physiol (1985); 2018 Mar; 124(3):780-790. PubMed ID: 29191980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy Expenditure Estimation of Tabata by Combining Acceleration and Heart Rate.
    Yan Y; Chen Q
    Front Public Health; 2021; 9():804471. PubMed ID: 35198533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.