BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34205697)

  • 1. Formulation Improvements in the Applications of Surfactant-Oil-Water Systems Using the HLD
    Forgiarini AM; Marquez R; Salager JL
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34205697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophilic-lipophilic deviation (HLD) method for characterizing conventional and extended surfactants.
    Witthayapanyanon A; Harwell JH; Sabatini DA
    J Colloid Interface Sci; 2008 Sep; 325(1):259-66. PubMed ID: 18572180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instability of Emulsions Made with Surfactant-Oil-Water Systems at Optimum Formulation with Ultralow Interfacial Tension.
    Marquez R; Forgiarini AM; Langevin D; Salager JL
    Langmuir; 2018 Aug; 34(31):9252-9263. PubMed ID: 29986590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of the normalized hydrophilic-lipophilic-deviation (HLD
    Aubry JM; Ontiveros JF; Salager JL; Nardello-Rataj V
    Adv Colloid Interface Sci; 2020 Feb; 276():102099. PubMed ID: 31931276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Salinity-Phase-Inversion method (SPI-slope): A straightforward experimental approach to assess the hydrophilic-lipophilic-ratio and the salt-sensitivity of surfactants.
    Lemahieu G; Ontiveros JF; Gaudin T; Molinier V; Aubry JM
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):549-563. PubMed ID: 34628316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-Liquid-Liquid Wettability of Surfactant-Oil-Water Systems and Its Prediction around the Phase Inversion Point.
    Stammitti-Scarpone A; Acosta EJ
    Langmuir; 2019 Mar; 35(12):4305-4318. PubMed ID: 30821467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cloud Point of Alkyl Ethoxylates and Its Prediction with the Hydrophilic-Lipophilic Difference (HLD) Framework.
    Zarate-Muñoz S; Boza Troncoso A; Acosta E
    Langmuir; 2015 Nov; 31(44):12000-8. PubMed ID: 26467232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the effect of additives on wormlike micelle and liquid crystal formation and rheology with phase inversion phenomena.
    Choi F; Chen R; Acosta EJ
    J Colloid Interface Sci; 2020 Mar; 564():216-229. PubMed ID: 31911226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laundry Detergency of Solid Non-Particulate Soil Using Microemulsion-Based Formulation.
    Chanwattanakit J; Chavadej S
    J Oleo Sci; 2018 Feb; 67(2):187-198. PubMed ID: 29367481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of industrial wastewater demulsifier by HLD-NAC model.
    Ghasemi H; Eslami F
    Sci Rep; 2021 Aug; 11(1):16111. PubMed ID: 34373524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated Free Energy Model (IFEM) for microemulsions.
    Boza Troncoso A; Acosta E
    J Colloid Interface Sci; 2016 Mar; 466():400-12. PubMed ID: 26759991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the dynamic Phase Inversion Temperature (PIT) as a fast and effective method to track optimum formulation for Enhanced Oil Recovery.
    Lemahieu G; Ontiveros JF; Molinier V; Aubry JM
    J Colloid Interface Sci; 2019 Dec; 557():746-756. PubMed ID: 31563607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Clay Hydration and Swelling Inhibition Using Quaternary Ammonium Dicationic Surfactant with Phenyl Linker.
    Murtaza M; Ahmad HM; Kamal MS; Hussain SMS; Mahmoud M; Patil S
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32971742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Match of Solubility Parameters Between Oil and Surfactants as a Rational Approach for the Formulation of Microemulsion with a High Dispersed Volume of Copaiba Oil and Low Surfactant Content.
    Xavier-Junior FH; Huang N; Vachon JJ; Rehder VL; do Egito ES; Vauthier C
    Pharm Res; 2016 Dec; 33(12):3031-3043. PubMed ID: 27599989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant Adsorption to Different Fluid Interfaces.
    Bergfreund J; Siegenthaler S; Lutz-Bueno V; Bertsch P; Fischer P
    Langmuir; 2021 Jun; 37(22):6722-6727. PubMed ID: 34030438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulating and Retaining the Structure of Polymerized Surfactant Phases Using a Microemulsion Curvature Framework.
    Choi F; Nirmal G; Pizzardi M; Acosta EJ
    Langmuir; 2019 Dec; 35(51):16821-16834. PubMed ID: 31755720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What dominates the interfacial properties of extended surfactants: Amphipathicity or surfactant shape?
    Chen J; Hu XY; Fang Y; Jin GY; Xia YM
    J Colloid Interface Sci; 2019 Jul; 547():190-198. PubMed ID: 30954763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Hydrophobically Modified Polyacrylamide in Mixed Polymer-Gemini Surfactant Systems for Enhanced Oil Recovery Application.
    Bhut PR; Pal N; Mandal A
    ACS Omega; 2019 Dec; 4(23):20164-20177. PubMed ID: 31815217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward Reservoir-on-a-Chip: Rapid Performance Evaluation of Enhanced Oil Recovery Surfactants for Carbonate Reservoirs Using a Calcite-Coated Micromodel.
    Yun W; Chang S; Cogswell DA; Eichmann SL; Gizzatov A; Thomas G; Al-Hazza N; Abdel-Fattah A; Wang W
    Sci Rep; 2020 Jan; 10(1):782. PubMed ID: 31964925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation.
    Bouchemal K; Briançon S; Perrier E; Fessi H
    Int J Pharm; 2004 Aug; 280(1-2):241-51. PubMed ID: 15265563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.