These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34205697)

  • 21. Study on a Nonionic Surfactant/Nanoparticle Composite Flooding System for Enhanced Oil Recovery.
    He Y; Liao K; Bai J; Fu L; Ma Q; Zhang X; Ren Z; Wang W
    ACS Omega; 2021 Apr; 6(16):11068-11076. PubMed ID: 34056260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Extended Surfactant Structure on the Interfacial Tension and Optimal Salinity of Dilute Solutions.
    He W; Ge J; Zhang G; Jiang P; Jin L
    ACS Omega; 2019 Jul; 4(7):12410-12417. PubMed ID: 31460359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial degradation of emulsified crude oil and the effect of various surfactants.
    Bruheim P; Bredholt H; Eimhjellen K
    Can J Microbiol; 1997 Jan; 43(1):17-22. PubMed ID: 9057292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase-Dependent Surfactant Transport on the Microscale: Interfacial Tension and Droplet Coalescence.
    Chen Y; Narayan S; Dutcher CS
    Langmuir; 2020 Dec; 36(49):14904-14923. PubMed ID: 33269588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: interfacial tension and contact angle studies.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2012 Jul; 377(1):396-405. PubMed ID: 22487228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solubilization rates of oils in surfactant solutions and their relationship to mass transport in emulsions.
    Peña AA; Miller CA
    Adv Colloid Interface Sci; 2006 Nov; 123-126():241-57. PubMed ID: 16860285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review.
    Liu JW; Wei KH; Xu SW; Cui J; Ma J; Xiao XL; Xi BD; He XS
    Sci Total Environ; 2021 Feb; 756():144142. PubMed ID: 33302075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling micelle formation and interfacial properties with iSAFT classical density functional theory.
    Wang L; Haghmoradi A; Liu J; Xi S; Hirasaki GJ; Miller CA; Chapman WG
    J Chem Phys; 2017 Mar; 146(12):124705. PubMed ID: 28388160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural aspects of surfactant selection for the design of vegetable oil semi-synthetic metalworking fluids.
    Zhao F; Clarens A; Murphree A; Hayes K; Skerlos SJ
    Environ Sci Technol; 2006 Dec; 40(24):7930-7. PubMed ID: 17256551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formulation of oil-in-water emulsions for pesticide applications: impact of surfactant type and concentration on physical stability.
    Feng J; Chen Q; Wu X; Jafari SM; McClements DJ
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21742-21751. PubMed ID: 29790050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between Oil-Water Interfacial Tension and Oily Soil Removal in Mixed Surfactant Systems.
    Verma S; Kumar VV
    J Colloid Interface Sci; 1998 Nov; 207(1):1-10. PubMed ID: 9778384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dimensionless Equation of State to Predict Microemulsion Phase Behavior.
    Ghosh S; Johns RT
    Langmuir; 2016 Sep; 32(35):8969-79. PubMed ID: 27504666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formulating chlorinated hydrocarbon microemulsions using linker molecules.
    Acosta E; Tran S; Uchiyama H; Sabatini DA; Harwell JH
    Environ Sci Technol; 2002 Nov; 36(21):4618-24. PubMed ID: 12433173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions.
    Owoseni O; Nyankson E; Zhang Y; Adams DJ; He J; Spinu L; McPherson GL; Bose A; Gupta RB; John VT
    J Colloid Interface Sci; 2016 Feb; 463():288-98. PubMed ID: 26555959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surfactant specific ionic strength effects on membrane fouling during produced water treatment.
    Dickhout JM; Virga E; Lammertink RGH; de Vos WM
    J Colloid Interface Sci; 2019 Nov; 556():12-23. PubMed ID: 31419735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures.
    Torrealba VA; Johns RT
    Langmuir; 2017 Nov; 33(47):13604-13614. PubMed ID: 29116804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size dependent droplet interfacial tension and surfactant transport in liquid-liquid systems, with applications in shipboard oily bilgewater emulsions.
    Chen Y; Dutcher CS
    Soft Matter; 2020 Mar; 16(12):2994-3004. PubMed ID: 32125335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating Preferred Alkane Carbon Numbers of Nonionic Surfactants in Normalized Hydrophilic-Lipophilic Deviation Theory from Dissipative Particle Dynamics Modeling.
    Ren H; Zhang Q; Zhang B; Song Q
    J Phys Chem B; 2022 May; 126(19):3593-3606. PubMed ID: 35507670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-interfacial properties relationship and quantification of the amphiphilicity of well-defined ionic and non-ionic surfactants using the PIT-slope method.
    Ontiveros JF; Pierlot C; Catté M; Molinier V; Salager JL; Aubry JM
    J Colloid Interface Sci; 2015 Jun; 448():222-30. PubMed ID: 25744856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pore scale investigation of crude oil distribution and removal from homogeneous porous media during surfactant-induced remediation.
    Ghosh J; Tick GR
    J Contam Hydrol; 2013 Dec; 155():20-30. PubMed ID: 24113292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.