BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34205736)

  • 21. Study of biphasic calcium phosphate (BCP) ceramics of tilapia fish bones by age.
    da Cruz JA; Pezarini RR; Sales AJM; Benjamin SR; de Oliveira Silva PM; Graça MPF
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Aug; 316():124289. PubMed ID: 38692101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of biomimetic Ca-hydroxyapatite powders at 37 degrees C in synthetic body fluids.
    Tas AC
    Biomaterials; 2000 Jul; 21(14):1429-38. PubMed ID: 10872772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures.
    Kannan S; Vieira SI; Olhero SM; Torres PM; Pina S; da Cruz e Silva OA; Ferreira JM
    Acta Biomater; 2011 Apr; 7(4):1835-43. PubMed ID: 21146640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural characterization and biological fluid interaction of Sol-Gel-derived Mg-substituted biphasic calcium phosphate ceramics.
    Gomes S; Renaudin G; Jallot E; Nedelec JM
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):505-13. PubMed ID: 20353243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The deposition of strontium and zinc Co-substituted hydroxyapatite coatings.
    Robinson L; Salma-Ancane K; Stipniece L; Meenan BJ; Boyd AR
    J Mater Sci Mater Med; 2017 Mar; 28(3):51. PubMed ID: 28197823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium phosphate formation in gelatin matrix using free ion precursors of Ca2+ and phosphate ions.
    Chang MC; DeLong R
    Dent Mater; 2009 Feb; 25(2):261-8. PubMed ID: 18760464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical characterization of silicon-substituted hydroxyapatite.
    Gibson IR; Best SM; Bonfield W
    J Biomed Mater Res; 1999 Mar; 44(4):422-8. PubMed ID: 10397946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selenium- and/or copper-substituted hydroxyapatite: A bioceramic substrate for biomedical applications.
    Korowash SI; Keskin-Erdogan Z; Hemdan BA; Barrios Silva LV; Ibrahim DM; Chau DY
    J Biomater Appl; 2023 Sep; 38(3):351-360. PubMed ID: 37604458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microwave-assisted biomimetic synthesis of hydroxyapatite using different sources of calcium.
    Türk S; Altınsoy İ; ÇelebiEfe G; Ipek M; Özacar M; Bindal C
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():528-535. PubMed ID: 28482560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium phosphate powders synthesized from CaCO
    Laonapakul T; Sutthi R; Chaikool P; Talangkun S; Boonma A; Chindaprasirt P
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111333. PubMed ID: 33254965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxyapatite nanophases augmented with selenium and manganese ions for bone regeneration: Physiochemical, microstructural and biological characterization.
    Muthusamy S; Mahendiran B; Sampath S; Jaisankar SN; Anandasadagopan SK; Krishnakumar GS
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112149. PubMed ID: 34082960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Empirical and theoretical insights into the structural effects of selenite doping in hydroxyapatite and the ensuing inhibition of osteoclasts.
    Wu VM; Ahmed MK; Mostafa MS; Uskoković V
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111257. PubMed ID: 32919627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, structure, thermal stability, mechanical and antibacterial behaviour of lanthanum (La³⁺) substitutions in β-tricalciumphosphate.
    Meenambal R; Singh RK; Nandha Kumar P; Kannan S
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():598-606. PubMed ID: 25175254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical characterization of hydroxyapatite obtained by wet chemistry in the presence of V, Co, and Cu ions.
    Moseke C; Gelinsky M; Groll J; Gbureck U
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1654-61. PubMed ID: 23827620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Apatitic calcium phosphate/montmorillonite nano-biocomposite: in-situ synthesis, characterization and dissolution properties.
    Jamil M; Elouahli A; Abida F; Assaoui J; Gourri E; Hatim Z
    Heliyon; 2022 Aug; 8(8):e10042. PubMed ID: 35965974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strontium doped hydroxyapatite from Mercenaria clam shells: Synthesis, mechanical and bioactivity study.
    Pal A; Nasker P; Paul S; Roy Chowdhury A; Sinha A; Das M
    J Mech Behav Biomed Mater; 2019 Feb; 90():328-336. PubMed ID: 30399562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unraveling the structural complexity of and the effect of calcination temperature on calcium phosphates derived from
    Eknapakul T; Jiamprasertboon A; Amonpattaratkit P; Pimsawat A; Daengsakul S; Tanapongpisit N; Saenrang W; Bootchanont A; Wannapraphai P; Phetrattanarangsi T; Boonchuduang T; Khamkongkaeo A; Yimnirun R
    Heliyon; 2024 Apr; 10(8):e29665. PubMed ID: 38644889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro synthesis and characterization of amorphous calcium phosphates with various Ca/P atomic ratios.
    Li Y; Weng W
    J Mater Sci Mater Med; 2007 Dec; 18(12):2303-8. PubMed ID: 17562135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate.
    Sriranganathan D; Kanwal N; Hing KA; Hill RG
    J Mater Sci Mater Med; 2016 Feb; 27(2):39. PubMed ID: 26704556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics.
    Cüneyt Taş A; Korkusuz F; Timuçin M; Akkaş N
    J Mater Sci Mater Med; 1997 Feb; 8(2):91-6. PubMed ID: 15348776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.