These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34205819)

  • 1. CMPC: An Innovative Lidar-Based Method to Estimate Tree Canopy Meshing-Profile Volumes for Orchard Target-Oriented Spray.
    Gu C; Zhai C; Wang X; Wang S
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobile LiDAR Scanning System Combined with Canopy Morphology Extracting Methods for Tree Crown Parameters Evaluation in Orchards.
    Wang K; Zhou J; Zhang W; Zhang B
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting seasonal change of broad-leaved woody canopy leaf area density profile using 3D portable LIDAR imaging.
    Hosoi F; Omasa K
    Funct Plant Biol; 2009 Nov; 36(11):998-1005. PubMed ID: 32688711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees.
    Raman MG; Carlos EF; Sankaran S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest.
    Wang Y; Weinacker H; Koch B
    Sensors (Basel); 2008 Jun; 8(6):3938-3951. PubMed ID: 27879916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods.
    Llorens J; Gil E; Llop J; Escolà A
    Sensors (Basel); 2011; 11(2):2177-94. PubMed ID: 22319405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing and correcting topographic effects on forest canopy height retrieval using airborne LiDAR data.
    Duan Z; Zhao D; Zeng Y; Zhao Y; Wu B; Zhu J
    Sensors (Basel); 2015 May; 15(6):12133-55. PubMed ID: 26016907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Canopy Information Measurement Method for Modern Standardized Apple Orchards Based on UAV Multimodal Information.
    Sun G; Wang X; Yang H; Zhang X
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wind loss model for the thick canopies of orchard trees based on accurate variable spraying.
    Gu C; Zou W; Wang X; Chen L; Zhai C
    Front Plant Sci; 2022; 13():1010540. PubMed ID: 36212365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observing the forest canopy with a new ultra-violet compact airborne lidar.
    Cuesta J; Chazette P; Allouis T; Flamant PH; Durrieu S; Sanak J; Genau P; Guyon D; Loustau D; Flamant C
    Sensors (Basel); 2010; 10(8):7386-403. PubMed ID: 22163608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA.
    Griffith KT; Ponette-González AG; Curran LM; Weathers KC
    Environ Monit Assess; 2015 May; 187(5):270. PubMed ID: 25893759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the Suitability of a Terrestrial 2D LiDAR Scanner for Canopy Characterization of Greenhouse Tomato Crops.
    Llop J; Gil E; Llorens J; Miranda-Fuentes A; Gallart M
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27608025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR.
    Brede B; Lau A; Bartholomeus HM; Kooistra L
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29039755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A LiDAR Sensor-Based Spray Boom Height Detection Method and the Corresponding Experimental Validation.
    Dou H; Wang S; Zhai C; Chen L; Wang X; Zhao X
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of Individual Fruit-Bearing Capacity of Trees Is Aimed at Optimizing Fruit Quality of
    Penzel M; Herppich WB; Weltzien C; Tsoulias N; Zude-Sasse M
    Front Plant Sci; 2021; 12():669909. PubMed ID: 34326853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of Spray Drift with a Specifically Designed Lidar System.
    Gregorio E; Torrent X; Planas de Martí S; Solanelles F; Sanz R; Rocadenbosch F; Masip J; Ribes-Dasi M; Rosell-Polo JR
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27070613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.
    Sanz-Cortiella R; Llorens-Calveras J; Escolà A; Arnó-Satorra J; Ribes-Dasi M; Masip-Vilalta J; Camp F; Gràcia-Aguilá F; Solanelles-Batlle F; Planas-DeMartí S; Pallejà-Cabré T; Palacin-Roca J; Gregorio-Lopez E; Del-Moral-Martínez I; Rosell-Polo JR
    Sensors (Basel); 2011; 11(6):5769-91. PubMed ID: 22163926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Characterization of mid-subtropical evergreen broad-leaved forest gap based on light detection and ranging (LiDAR)].
    Liu F; Tan C; Wang H; Zhang J; Wan Y; Long JP; Liu RX
    Ying Yong Sheng Tai Xue Bao; 2015 Dec; 26(12):3611-8. PubMed ID: 27111996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying.
    Gil E; Llorens J; Llop J; Fàbregas X; Gallart M
    Sensors (Basel); 2013 Jan; 13(1):516-34. PubMed ID: 23282583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction and analysis of a deciduous sapling using digital photographs or terrestrial-LiDAR technology.
    Delagrange S; Rochon P
    Ann Bot; 2011 Oct; 108(6):991-1000. PubMed ID: 21515607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.