These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34205819)
1. CMPC: An Innovative Lidar-Based Method to Estimate Tree Canopy Meshing-Profile Volumes for Orchard Target-Oriented Spray. Gu C; Zhai C; Wang X; Wang S Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205819 [TBL] [Abstract][Full Text] [Related]
2. Mobile LiDAR Scanning System Combined with Canopy Morphology Extracting Methods for Tree Crown Parameters Evaluation in Orchards. Wang K; Zhou J; Zhang W; Zhang B Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419182 [TBL] [Abstract][Full Text] [Related]
3. Detecting seasonal change of broad-leaved woody canopy leaf area density profile using 3D portable LIDAR imaging. Hosoi F; Omasa K Funct Plant Biol; 2009 Nov; 36(11):998-1005. PubMed ID: 32688711 [TBL] [Abstract][Full Text] [Related]
4. Research on orchard navigation method based on fusion of 3D SLAM and point cloud positioning. Xia Y; Lei X; Pan J; Chen L; Zhang Z; Lyu X Front Plant Sci; 2023; 14():1207742. PubMed ID: 37434606 [TBL] [Abstract][Full Text] [Related]
5. Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees. Raman MG; Carlos EF; Sankaran S Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746401 [TBL] [Abstract][Full Text] [Related]
6. A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest. Wang Y; Weinacker H; Koch B Sensors (Basel); 2008 Jun; 8(6):3938-3951. PubMed ID: 27879916 [TBL] [Abstract][Full Text] [Related]
7. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods. Llorens J; Gil E; Llop J; Escolà A Sensors (Basel); 2011; 11(2):2177-94. PubMed ID: 22319405 [TBL] [Abstract][Full Text] [Related]
9. A Canopy Information Measurement Method for Modern Standardized Apple Orchards Based on UAV Multimodal Information. Sun G; Wang X; Yang H; Zhang X Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466120 [TBL] [Abstract][Full Text] [Related]
10. Wind loss model for the thick canopies of orchard trees based on accurate variable spraying. Gu C; Zou W; Wang X; Chen L; Zhai C Front Plant Sci; 2022; 13():1010540. PubMed ID: 36212365 [TBL] [Abstract][Full Text] [Related]
11. Observing the forest canopy with a new ultra-violet compact airborne lidar. Cuesta J; Chazette P; Allouis T; Flamant PH; Durrieu S; Sanak J; Genau P; Guyon D; Loustau D; Flamant C Sensors (Basel); 2010; 10(8):7386-403. PubMed ID: 22163608 [TBL] [Abstract][Full Text] [Related]
12. Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA. Griffith KT; Ponette-González AG; Curran LM; Weathers KC Environ Monit Assess; 2015 May; 187(5):270. PubMed ID: 25893759 [TBL] [Abstract][Full Text] [Related]
13. Computational model of pesticide deposition distribution on canopies for air-assisted spraying. Dou H; Li Q; Zhai C; Yang S; Zhao C; Gao Y; He Y Front Plant Sci; 2023; 14():1153904. PubMed ID: 37223781 [TBL] [Abstract][Full Text] [Related]
14. Testing the Suitability of a Terrestrial 2D LiDAR Scanner for Canopy Characterization of Greenhouse Tomato Crops. Llop J; Gil E; Llorens J; Miranda-Fuentes A; Gallart M Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27608025 [TBL] [Abstract][Full Text] [Related]
15. Mapping global mangrove canopy height by integrating Ice, Cloud, and Land Elevation Satellite-2 photon-counting LiDAR data with multi-source images. Yu J; Nie S; Liu W; Zhu X; Sun Z; Li J; Wang C; Xi X; Fan H Sci Total Environ; 2024 Aug; 939():173487. PubMed ID: 38810758 [TBL] [Abstract][Full Text] [Related]
16. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR. Brede B; Lau A; Bartholomeus HM; Kooistra L Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29039755 [TBL] [Abstract][Full Text] [Related]
17. A LiDAR Sensor-Based Spray Boom Height Detection Method and the Corresponding Experimental Validation. Dou H; Wang S; Zhai C; Chen L; Wang X; Zhao X Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802785 [TBL] [Abstract][Full Text] [Related]
18. Modeling of Individual Fruit-Bearing Capacity of Trees Is Aimed at Optimizing Fruit Quality of Penzel M; Herppich WB; Weltzien C; Tsoulias N; Zude-Sasse M Front Plant Sci; 2021; 12():669909. PubMed ID: 34326853 [TBL] [Abstract][Full Text] [Related]
19. Fruit surface temperature data at different ripeness stages and ambient temperature provided as temperature-annotated 3D point clouds of apple trees. Zude-Sasse M; Regen C; Jörissen S; Bignardi M; Tsoulias N Data Brief; 2024 Aug; 55():110762. PubMed ID: 39149715 [TBL] [Abstract][Full Text] [Related]
20. Measurement of Spray Drift with a Specifically Designed Lidar System. Gregorio E; Torrent X; Planas de Martí S; Solanelles F; Sanz R; Rocadenbosch F; Masip J; Ribes-Dasi M; Rosell-Polo JR Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27070613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]