BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34205955)

  • 1. Physical Aspects of Organogelation: A Point of View.
    Guenet JM
    Gels; 2021 Jun; 7(2):. PubMed ID: 34205955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of Invariant Gel Melting Temperatures in the c-T Phase Diagram of an Organogel.
    Christ E; Blanc C; Al Ouahabi A; Maurin D; Le Parc R; Bantignies JL; Guenet JM; Collin D; Mésini PJ
    Langmuir; 2016 May; 32(19):4975-82. PubMed ID: 27088451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting rheological characteristics of fibril gels: the case of beta-lactoglobulin and alpha-lactalbumin.
    Loveday SM; Rao MA; Creamer LK; Singh H
    J Food Sci; 2009 Apr; 74(3):R47-55. PubMed ID: 19397731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological Study on the Thermoreversible Gelation of Stereo-Controlled Poly(
    Yan ZC; Biswas CS; Stadler FJ
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the gel phase of cationic glycylalanylglycine in ethanol/water. II. Spectroscopic, kinetic and thermodynamic studies.
    DiGuiseppi DM; Thursch L; Alvarez NJ; Schweitzer-Stenner R
    J Colloid Interface Sci; 2020 Aug; 573():123-134. PubMed ID: 32278171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of water structure on gelation of agar in glycerol solutions and phase diagram of agar organogels.
    Boral S; Bohidar HB
    J Phys Chem B; 2012 Jun; 116(24):7113-21. PubMed ID: 22657388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the gel phase of cationic glycylalanylglycine in ethanol/water. I. Rheology and microscopy studies.
    Thursch LJ; DiGuiseppi D; Lewis TR; Schweitzer-Stenner R; Alvarez NJ
    J Colloid Interface Sci; 2020 Mar; 564():499-509. PubMed ID: 31883655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour.
    Xu Y; Atrens A; Stokes JR
    Adv Colloid Interface Sci; 2020 Jan; 275():102076. PubMed ID: 31780045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelation, phase behavior, and dynamics of β-lactoglobulin amyloid fibrils at varying concentrations and ionic strengths.
    Bolisetty S; Harnau L; Jung JM; Mezzenga R
    Biomacromolecules; 2012 Oct; 13(10):3241-52. PubMed ID: 22924940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effect of shearing and cooling rate on the rheology of organogels developed by selected gelators.
    De la Peña-Gil A; Álvarez-Mitre FM; González-Chávez MM; Charó-Alonso MA; Toro-Vazquez JF
    Food Res Int; 2017 Mar; 93():52-65. PubMed ID: 28290280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of ternary phase diagrams by means of thermal and rheological analyses.
    Bonacucina G; Cespi M; Mencarelli G; Palmieri GF
    Drug Dev Ind Pharm; 2013 Oct; 39(10):1547-54. PubMed ID: 23057598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological study of albumin and hyaluronan-albumin hydrogels: Effect of concentration, ionic strength, pH and molecular weight.
    Hájovská P; Chytil M; Kalina M
    Int J Biol Macromol; 2020 Oct; 161():738-745. PubMed ID: 32534090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confocal Rheology Probes the Structure and Mechanics of Collagen through the Sol-Gel Transition.
    Tran-Ba KH; Lee DJ; Zhu J; Paeng K; Kaufman LJ
    Biophys J; 2017 Oct; 113(8):1882-1892. PubMed ID: 29045881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-induced gelation of low methoxy pectin solutions--thermodynamic and rheological considerations.
    Durand D; Bertrand C; Clark AH; Lips A
    Int J Biol Macromol; 1990 Feb; 12(1):14-8. PubMed ID: 2083236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the phase diagrams of chiral praziquantel.
    Liu Y; Wang X; Wang JK; Ching CB
    Chirality; 2006 May; 18(4):259-64. PubMed ID: 16521119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoreversible lysozyme hydrogels: properties and an insight into the gelation pathway.
    Yan H; Frielinghaus H; Nykanen A; Ruokolainen J; Saiani A; Miller AF
    Soft Matter; 2008 May; 4(6):1313-1325. PubMed ID: 32907277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topology evolution and gelation mechanism of agarose gel.
    Xiong JY; Narayanan J; Liu XY; Chong TK; Chen SB; Chung TS
    J Phys Chem B; 2005 Mar; 109(12):5638-43. PubMed ID: 16851608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction.
    Bu H; Kjøniksen AL; Knudsen KD; Nyström B
    Biomacromolecules; 2004; 5(4):1470-9. PubMed ID: 15244467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interplay of aggregation, fibrillization and gelation of an unexpected low molecular weight gelator: glycylalanylglycine in ethanol/water.
    Farrell S; DiGuiseppi D; Alvarez N; Schweitzer-Stenner R
    Soft Matter; 2016 Jul; 12(28):6096-110. PubMed ID: 27363780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents.
    Esposito CL; Tardif V; Sarrazin M; Kirilov P; Roullin VG
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110999. PubMed ID: 32993979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.