These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34206445)

  • 21. Photon Energy Storage in Strained Cyclic Hydrazones: Emerging Molecular Solar Thermal Energy Storage Compounds.
    Qiu Q; Yang S; Gerkman MA; Fu H; Aprahamian I; Han GGD
    J Am Chem Soc; 2022 Jul; 144(28):12627-12631. PubMed ID: 35801820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heteroaryl-linked norbornadiene dimers with redshifted absorptions.
    Mansø M; Tebikachew BE; Moth-Poulsen K; Nielsen MB
    Org Biomol Chem; 2018 Aug; 16(31):5585-5590. PubMed ID: 30051895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Solar Thermal Batteries through Combination of Magnetic Nanoparticle Catalysts and Tailored Norbornadiene Photoswitches.
    Lorenz P; Luchs T; Hirsch A
    Chemistry; 2021 Mar; 27(15):4993-5002. PubMed ID: 33449419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.
    Wang Z; Udmark J; Börjesson K; Rodrigues R; Roffey A; Abrahamsson M; Nielsen MB; Moth-Poulsen K
    ChemSusChem; 2017 Aug; 10(15):3049-3055. PubMed ID: 28644559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemically Triggered Energy Release from an Azothiophene-Based Molecular Solar Thermal System.
    Franz E; Kunz A; Oberhof N; Heindl AH; Bertram M; Fusek L; Taccardi N; Wasserscheid P; Dreuw A; Wegner HA; Brummel O; Libuda J
    ChemSusChem; 2022 Sep; 15(18):e202200958. PubMed ID: 35762102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Ab-Initio Study of Substituted Norbornadiene-Quadricyclane Compounds for Solar Thermal Storage.
    Kuisma MJ; Lundin AM; Moth-Poulsen K; Hyldgaard P; Erhart P
    J Phys Chem C Nanomater Interfaces; 2016 Feb; 120(7):3635-3645. PubMed ID: 26966476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of the thermochemical properties of the norbornadiene/quadricyclane photochromic couple for solar energy storage using nanoparticles.
    Hillers-Bendtsen AE; Kjeldal FØ; Høyer NM; Mikkelsen KV
    Phys Chem Chem Phys; 2022 Mar; 24(9):5506-5521. PubMed ID: 35171973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oriented External Electric Field Tuning of Unsubstituted Azoheteroarene Thermal Isomerization Half-Lives.
    Avdic I; Kempfer-Robertson EM; Thompson LM
    J Phys Chem A; 2021 Sep; 125(37):8238-8248. PubMed ID: 34494847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arylazopyrazole-Based Dendrimer Solar Thermal Fuels: Stable Visible Light Storage and Controllable Heat Release.
    Xu X; Wu B; Zhang P; Xing Y; Shi K; Fang W; Yu H; Wang G
    ACS Appl Mater Interfaces; 2021 May; 13(19):22655-22663. PubMed ID: 33970599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing Efficient Solar-Thermal Fuels with [n.n](9,10)Anthracene Cyclophanes: A Theoretical Perspective.
    Ganguly G; Sultana M; Paul A
    J Phys Chem Lett; 2018 Jan; 9(2):328-334. PubMed ID: 29256618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A state of the art on solar-powered vapor absorption cooling systems integrated with thermal energy storage.
    Sharma DK; Sharma D; Ali AHH
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):158-189. PubMed ID: 31832966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials.
    Carrillo AJ; González-Aguilar J; Romero M; Coronado JM
    Chem Rev; 2019 Apr; 119(7):4777-4816. PubMed ID: 30869873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photochromic Dendrimers for Photoswitched Solid-To-Liquid Transitions and Solar Thermal Fuels.
    Xu X; Zhang P; Wu B; Xing Y; Shi K; Fang W; Yu H; Wang G
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50135-50142. PubMed ID: 33085470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.
    Wong WY; Ho CL
    Acc Chem Res; 2010 Sep; 43(9):1246-56. PubMed ID: 20608673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational Design of Non-natural Sugar Alcohols to Increase Thermal Storage Density: Beyond Existing Organic Phase Change Materials.
    Inagaki T; Ishida T
    J Am Chem Soc; 2016 Sep; 138(36):11810-9. PubMed ID: 27505107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial photosynthesis for solar fuels.
    Styring S
    Faraday Discuss; 2012; 155():357-76. PubMed ID: 22470985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoswitchable Dihydroazulene Macrocycles for Solar Energy Storage: The Effects of Ring Strain.
    Vlasceanu A; Frandsen BN; Skov AB; Hansen AS; Rasmussen MG; Kjaergaard HG; Mikkelsen KV; Nielsen MB
    J Org Chem; 2017 Oct; 82(19):10398-10407. PubMed ID: 28853882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry.
    Harriman A
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110415. PubMed ID: 23816906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.