These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 34206531)
1. A Cylindrical Triode Ultrahigh Vacuum Ionization Gauge with a Carbon Nanotube Cathode. Zhang J; Wei J; Li D; Zhang H; Wang Y; Zhang X Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34206531 [TBL] [Abstract][Full Text] [Related]
2. An ionization gauge for ultrahigh vacuum measurement based on a carbon nanotube cathode. Zhang H; Cheng Y; Sun J; Wang Y; Xi Z; Dong M; Li D Rev Sci Instrum; 2017 Oct; 88(10):105107. PubMed ID: 29092465 [TBL] [Abstract][Full Text] [Related]
3. Multi-scale simulation of electron emission from a triode-type electron source with a carbon-nanotube column array cathode. Becker J; Hong NT; Berthelier JJ; Leblanc F; Lee S; Cipriani F Nanotechnology; 2013 Nov; 24(46):465303. PubMed ID: 24157413 [TBL] [Abstract][Full Text] [Related]
4. Residual currents detected with a correcting electrode in a modified Bayard-Alpert hot-cathode-ionization gauge. Saeki H; Magome T Rev Sci Instrum; 2008 May; 79(5):055102. PubMed ID: 18513087 [TBL] [Abstract][Full Text] [Related]
5. Design and Simulation of a Multi-Sheet Beam Terahertz Radiation Source Based on Carbon-Nanotube Cold Cathode. Zu Y; Yuan X; Xu X; Cole MT; Zhang Y; Li H; Yin Y; Wang B; Yan Y Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31842262 [TBL] [Abstract][Full Text] [Related]
6. Forms and behaviour of vacuum emission electronic devices comprising diamond or other carbon cold cathode emitters. Davidson JL; Kang WP; Subramanian K; Wong YM Philos Trans A Math Phys Eng Sci; 2008 Jan; 366(1863):281-93. PubMed ID: 18024363 [TBL] [Abstract][Full Text] [Related]
7. Characteristics of Carbon Nanotube Cold Cathode Triode Electron Gun Driven by MOSFET Working at Subthreshold Region. Guo Y; Li B; Zhang Y; Deng S; Chen J Nanomaterials (Basel); 2024 Jul; 14(15):. PubMed ID: 39120365 [TBL] [Abstract][Full Text] [Related]
8. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources. Radauscher EJ; Keil AD; Wells M; Amsden JJ; Piascik JR; Parker CB; Stoner BR; Glass JT J Am Soc Mass Spectrom; 2015 Nov; 26(11):1903-10. PubMed ID: 26133527 [TBL] [Abstract][Full Text] [Related]
9. Design of a multi-walled carbon nanotube field emitter with micro vacuum gauge. Dong KY; Lee YD; Kang BH; Choi J; Ju BK Nanoscale Res Lett; 2013 Mar; 8(1):143. PubMed ID: 23537226 [TBL] [Abstract][Full Text] [Related]
10. High-Performance Cold Cathode X-ray Tubes Using a Carbon Nanotube Field Electron Emitter. Han JS; Lee SH; Go H; Kim SJ; Noh JH; Lee CJ ACS Nano; 2022 Jul; 16(7):10231-10241. PubMed ID: 35687140 [TBL] [Abstract][Full Text] [Related]
11. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron. Yuan X; Zhu W; Zhang Y; Xu N; Yan Y; Wu J; Shen Y; Chen J; She J; Deng S Sci Rep; 2016 Sep; 6():32936. PubMed ID: 27609247 [TBL] [Abstract][Full Text] [Related]
12. Direct Synthesis of Carbon Nanotube Field Emitters on Metal Substrate for Open-Type X-ray Source in Medical Imaging. Gupta AP; Park S; Yeo SJ; Jung J; Cho C; Paik SH; Park H; Cho YC; Kim SH; Shin JH; Ahn JS; Ryu J Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773237 [TBL] [Abstract][Full Text] [Related]
13. Batch-processed carbon nanotube wall as pressure and flow sensor. Choi J; Kim J Nanotechnology; 2010 Mar; 21(10):105502. PubMed ID: 20154370 [TBL] [Abstract][Full Text] [Related]
14. Wide-range Vacuum Measurements from MWNT Field Emitters Grown Directly on Stainless Steel Substrates. Zhang J; Li D; Zhao Y; Cheng Y; Dong C Nanoscale Res Lett; 2016 Dec; 11(1):5. PubMed ID: 26738501 [TBL] [Abstract][Full Text] [Related]
15. Modelling of carbon nanotube film based temperature sensor: thermal emission and gas discharge. Pan Z; Zhang Y; Zhang C Nanotechnology; 2021 Aug; 32(47):. PubMed ID: 34384066 [TBL] [Abstract][Full Text] [Related]
16. A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes. Ribaya BP; Leung J; Brown P; Rahman M; Nguyen CV Nanotechnology; 2008 May; 19(18):185201. PubMed ID: 21825685 [TBL] [Abstract][Full Text] [Related]
17. A carbon nanotube field emission cathode with high current density and long-term stability. Calderón-Colón X; Geng H; Gao B; An L; Cao G; Zhou O Nanotechnology; 2009 Aug; 20(32):325707. PubMed ID: 19620758 [TBL] [Abstract][Full Text] [Related]
18. Electron transfer from a carbon nanotube into vacuum under high electric fields. Filip LD; Smith RC; Carey JD; Silva SR J Phys Condens Matter; 2009 May; 21(19):195302. PubMed ID: 21825476 [TBL] [Abstract][Full Text] [Related]
19. Proof-of-Concept Vacuum Microelectronic NOR Gate Fabricated Using Microelectromechanical Systems and Carbon Nanotube Field Emitters. von Windheim T; Gilchrist KH; Parker CB; Hall S; Carlson JB; Stokes D; Baldasaro NG; Hess CT; Scheick L; Rax B; Stoner B; Glass JT; Amsden JJ Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241597 [TBL] [Abstract][Full Text] [Related]
20. Field emission behavior of carbon nanotube yarn for micro-resolution X-ray tube cathode. Hwang JW; Mo CB; Jung HK; Ryu S; Hong SH J Nanosci Nanotechnol; 2013 Nov; 13(11):7386-90. PubMed ID: 24245260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]