BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34206613)

  • 21. Human ketosteroid receptors interact with hazardous phthalate plasticizers and their metabolites: an in silico study.
    Sarath Josh MK; Pradeep S; Vijayalekshmy Amma KS; Sudha Devi R; Balachandran S; Sreejith MN; Benjamin S
    J Appl Toxicol; 2016 Jun; 36(6):836-43. PubMed ID: 26304264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico binding of 4,4'-bisphenols predicts in vitro estrogenic and antiandrogenic activity.
    Conroy-Ben O; Garcia I; Teske SS
    Environ Toxicol; 2018 May; 33(5):569-578. PubMed ID: 29392883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the brominated flame retardant 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane as an androgen agonist.
    Larsson A; Eriksson LA; Andersson PL; Ivarson P; Olsson PE
    J Med Chem; 2006 Dec; 49(25):7366-72. PubMed ID: 17149866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Docking and CoMSIA studies on steroids and non-steroidal chemicals as androgen receptor ligands.
    Wang X; Li X; Shi W; Wei S; Giesy JP; Yu H; Wang Y
    Ecotoxicol Environ Saf; 2013 Mar; 89():143-9. PubMed ID: 23260236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformal prediction to define applicability domain - A case study on predicting ER and AR binding.
    Norinder U; Rybacka A; Andersson PL
    SAR QSAR Environ Res; 2016 Apr; 27(4):303-16. PubMed ID: 27088868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SAR and QSAR modeling of endocrine disruptors.
    Devillers J; Marchand-Geneste N; Carpy A; Porcher JM
    SAR QSAR Environ Res; 2006 Aug; 17(4):393-412. PubMed ID: 16920661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ANN and Bayesian classification models for virtual screening of endocrine-disrupting chemicals.
    Nowicki P; Klos J; Kokot Z
    Comb Chem High Throughput Screen; 2014; 17(5):407-16. PubMed ID: 24547995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of in silico methods and computational systems biology to explore endocrine-disrupting chemical binding with nuclear hormone receptors.
    Ruiz P; Sack A; Wampole M; Bobst S; Vracko M
    Chemosphere; 2017 Jul; 178():99-109. PubMed ID: 28319747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of the endocrine-disrupting effects of organophosphorus pesticide triazophos and its metabolites on endocrine hormones biosynthesis, transport and receptor binding in silico.
    Yang FW; Li YX; Ren FZ; Luo J; Pang GF
    Food Chem Toxicol; 2019 Nov; 133():110759. PubMed ID: 31421215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preliminary hazard evaluation of androgen receptor-mediated endocrine-disrupting effects of thioxanthone metabolites through structure-based molecular docking.
    Ginex T; Dall'Asta C; Cozzini P
    Chem Res Toxicol; 2014 Feb; 27(2):279-89. PubMed ID: 24387784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of androgen receptor antagonists: In vitro investigation and classification methodology for flavonoid.
    Wu Y; Doering JA; Ma Z; Tang S; Liu H; Zhang X; Wang X; Yu H
    Chemosphere; 2016 Sep; 158():72-9. PubMed ID: 27258897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homology modeling using multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to testosterone and nonsteroidal ligands.
    Marhefka CA; Moore BM; Bishop TC; Kirkovsky L; Mukherjee A; Dalton JT; Miller DD
    J Med Chem; 2001 May; 44(11):1729-40. PubMed ID: 11356108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endocrine-disrupting activity of per- and polyfluoroalkyl substances: Exploring combined approaches of ligand and structure based modeling.
    Kar S; Sepúlveda MS; Roy K; Leszczynski J
    Chemosphere; 2017 Oct; 184():514-523. PubMed ID: 28622647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In silico study on hydroxylated polychlorinated biphenyls as androgen receptor antagonists.
    Li X; Ye L; Shi W; Liu H; Liu C; Qian X; Zhu Y; Yu H
    Ecotoxicol Environ Saf; 2013 Jun; 92():258-64. PubMed ID: 23582771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generative Topographic Mapping of the Docking Conformational Space.
    Horvath D; Marcou G; Varnek A
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31216756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anti-androgen activity of polybrominated diphenyl ethers determined by comparative molecular similarity indices and molecular docking.
    Yang W; Mu Y; Giesy JP; Zhang A; Yu H
    Chemosphere; 2009 May; 75(9):1159-64. PubMed ID: 19324393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endocrine Disrupting Chemicals Mediated through Binding Androgen Receptor Are Associated with Diabetes Mellitus.
    Sakkiah S; Wang T; Zou W; Wang Y; Pan B; Tong W; Hong H
    Int J Environ Res Public Health; 2017 Dec; 15(1):. PubMed ID: 29295509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Androgen Receptor Binding Category Prediction with Deep Neural Networks and Structure-, Ligand-, and Statistically Based Features.
    García-Sosa AT
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33652992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative study on the use of docking and Bayesian categorization to predict ligand binding to nicotinic acetylcholine receptors (nAChRs) subtypes.
    Kombo DC; Bencherif M
    J Chem Inf Model; 2013 Dec; 53(12):3212-22. PubMed ID: 24328365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of induced fit on ligand binding to the androgen receptor: a multidimensional QSAR study to predict endocrine-disrupting effects of environmental chemicals.
    Lill MA; Winiger F; Vedani A; Ernst B
    J Med Chem; 2005 Sep; 48(18):5666-74. PubMed ID: 16134935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.