BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 34206706)

  • 1. Genomic Analysis of Prophages Recovered from
    Vu HTK; Stasiewicz MJ; Benjakul S; Vongkamjan K
    Microorganisms; 2021 Jun; 9(7):. PubMed ID: 34206706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Listeria prophages in lysogenic isolates from foods and food processing environments.
    Vu HTK; Benjakul S; Vongkamjan K
    PLoS One; 2019; 14(4):e0214641. PubMed ID: 30934000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term genome evolution of Listeria monocytogenes in a non-controlled environment.
    Orsi RH; Borowsky ML; Lauer P; Young SK; Nusbaum C; Galagan JE; Birren BW; Ivy RA; Sun Q; Graves LM; Swaminathan B; Wiedmann M
    BMC Genomics; 2008 Nov; 9():539. PubMed ID: 19014550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting Listeria monocytogenes Persistent Contamination in a Retail Market Using Whole-Genome Sequencing.
    Wang Y; Luo L; Ji S; Li Q; Wang H; Zhang Z; Mao P; Sun H; Li L; Wang Y; Xu J; Lan R; Ye C
    Microbiol Spectr; 2022 Jun; 10(3):e0018522. PubMed ID: 35579473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of mobile genetic elements of Listeria monocytogenes persisting in ready-to-eat seafood processing plants in France.
    Palma F; Brauge T; Radomski N; Mallet L; Felten A; Mistou MY; Brisabois A; Guillier L; Midelet-Bourdin G
    BMC Genomics; 2020 Feb; 21(1):130. PubMed ID: 32028892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Genomic Analysis Reveals That the 20K and 38K Prophages in Listeria monocytogenes Serovar 4a Strains Lm850658 and M7 Contribute to Genetic Diversity but Not to Virulence.
    Fang C; Cao T; Shan Y; Xia Y; Xin Y; Cheng C; Song H; Bowman J; Li X; Zhou X; Fang W
    J Microbiol Biotechnol; 2016 Jan; 26(1):197-206. PubMed ID: 26464378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. comK prophage junction fragments as markers for Listeria monocytogenes genotypes unique to individual meat and poultry processing plants and a model for rapid niche-specific adaptation, biofilm formation, and persistence.
    Verghese B; Lok M; Wen J; Alessandria V; Chen Y; Kathariou S; Knabel S
    Appl Environ Microbiol; 2011 May; 77(10):3279-92. PubMed ID: 21441318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of Listeria monocytogenes in a Food Processing Plant Involves Limited Single-Nucleotide Substitutions but Considerable Diversification by Gain and Loss of Prophages.
    Harrand AS; Jagadeesan B; Baert L; Wiedmann M; Orsi RH
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31900305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic dissection of the most prevalent Listeria monocytogenes clone, sequence type ST87, in China.
    Wang Y; Luo L; Li Q; Wang H; Wang Y; Sun H; Xu J; Lan R; Ye C
    BMC Genomics; 2019 Dec; 20(1):1014. PubMed ID: 31870294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomes of sequence type 121 Listeria monocytogenes strains harbor highly conserved plasmids and prophages.
    Schmitz-Esser S; Müller A; Stessl B; Wagner M
    Front Microbiol; 2015; 6():380. PubMed ID: 25972859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Eco-evolutionary Model on Surviving Lysogeny Through Grounding and Accumulation of Prophages.
    Sudhakari PA; Ramisetty BCM
    Microb Ecol; 2023 Nov; 86(4):3068-3081. PubMed ID: 37843655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Diversity of Common Sequence Types of
    Matle I; Pierneef R; Mbatha KR; Magwedere K; Madoroba E
    Genes (Basel); 2019 Dec; 10(12):. PubMed ID: 31817243
    [No Abstract]   [Full Text] [Related]  

  • 13. Bacterial 'Grounded' Prophages: Hotspots for Genetic Renovation and Innovation.
    Ramisetty BCM; Sudhakari PA
    Front Genet; 2019; 10():65. PubMed ID: 30809245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Searching for a "hidden" prophage in a marine bacterium.
    Zhao Y; Wang K; Ackermann HW; Halden RU; Jiao N; Chen F
    Appl Environ Microbiol; 2010 Jan; 76(2):589-95. PubMed ID: 19948862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. May the Phage be With You? Prophage-Like Elements in the Genomes of Soft Rot
    Czajkowski R
    Front Microbiol; 2019; 10():138. PubMed ID: 30828320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification, characterization, and phylogenetic analysis of eight new inducible prophages in Lactobacillus.
    Pei Z; Sadiq FA; Han X; Zhao J; Zhang H; Ross RP; Lu W; Chen W
    Virus Res; 2020 Sep; 286():198003. PubMed ID: 32450182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution, inducibility, and characteristics of
    Ambros CL; Ehrmann MA
    Microbiome Res Rep; 2023; 2(4):34. PubMed ID: 38045928
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparative genomics of human and non-human Listeria monocytogenes sequence type 121 strains.
    Rychli K; Wagner EM; Ciolacu L; Zaiser A; Tasara T; Wagner M; Schmitz-Esser S
    PLoS One; 2017; 12(5):e0176857. PubMed ID: 28472116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction and characterization of prophages of Stenotrophomonas maltophilia reveals a remarkable phylogenetic diversity of prophages.
    Fang Z; Xu M; Shen S; Sun W; Yu Q; Wu Q; Xiang L; Weng Q
    Sci Rep; 2023 Dec; 13(1):22941. PubMed ID: 38135742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmid-Mediated Stabilization of Prophages.
    Tuttle MJ; May FS; Basso JTR; Gann ER; Xu J; Buchan A
    mSphere; 2022 Apr; 7(2):e0093021. PubMed ID: 35311569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.