These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34206717)

  • 21. Evolutionary programming-based univector field navigation method for past mobile robots.
    Kim YJ; Kim JH; Kwon DS
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(3):450-8. PubMed ID: 18244811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Cooperative Path Planning for Multi-robot Persistent Coverage with Obstacles and Coverage Period Constraints.
    Sun G; Zhou R; Di B; Dong Z; Wang Y
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning to Avoid Obstacles With Minimal Intervention Control.
    Duan A; Camoriano R; Ferigo D; Huang Y; Calandriello D; Rosasco L; Pucci D
    Front Robot AI; 2020; 7():60. PubMed ID: 33501228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.
    Chang K; Xia Y; Huang K
    Springerplus; 2016; 5(1):1124. PubMed ID: 27478741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Symbiotic Navigation in Multi-Robot Systems with Remote Obstacle Knowledge Sharing.
    Ravankar A; Ravankar AA; Kobayashi Y; Emaru T
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28678193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collaborative Multi-Robot Transportation in Obstacle-Cluttered Environments via Implicit Communication.
    Bechlioulis CP; Kyriakopoulos KJ
    Front Robot AI; 2018; 5():90. PubMed ID: 33500969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Joint Formation Control with Obstacle Avoidance of Towfish and Multiple Autonomous Underwater Vehicles Based on Graph Theory and the Null-Space-Based Method.
    Pang SK; Li YH; Yi H
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural-Dynamic Optimization-Based Model Predictive Control for Tracking and Formation of Nonholonomic Multirobot Systems.
    Li Z; Yuan W; Chen Y; Ke F; Chu X; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):6113-6122. PubMed ID: 29993700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Navigation of Three Cooperative Object-Transportation Robots Using a Multistage Evolutionary Fuzzy Control Approach.
    Juang CF; Lu CH; Huang CA
    IEEE Trans Cybern; 2022 May; 52(5):3606-3619. PubMed ID: 32915759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Connectivity-Preserving Approach for Distributed Adaptive Synchronized Tracking of Networked Uncertain Nonholonomic Mobile Robots.
    Yoo SJ; Park BS
    IEEE Trans Cybern; 2018 Sep; 48(9):2598-2608. PubMed ID: 28885169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cooperative Exploration and Networking While Preserving Collision Avoidance.
    Kim J
    IEEE Trans Cybern; 2017 Dec; 47(12):4038-4048. PubMed ID: 27514071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intelligent Multirobot Navigation and Arrival-Time Control Using a Scalable PSO-Optimized Hierarchical Controller.
    Chang YC; Dostovalova A; Lin CT; Kim J
    Front Artif Intell; 2020; 3():50. PubMed ID: 33733167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural network control of mobile robot formations using RISE feedback.
    Dierks T; Jagannathan S
    IEEE Trans Syst Man Cybern B Cybern; 2009 Apr; 39(2):332-47. PubMed ID: 19095558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-Triggered Formation Control of Nonholonomic Robots.
    Santos C; Espinosa F; Martinez-Rey M; Gualda D; Losada C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31207941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Multilayer Graph for Multiagent Formation and Trajectory Tracking Control Based on MPC Algorithm.
    Pan Z; Sun Z; Deng H; Li D
    IEEE Trans Cybern; 2022 Dec; 52(12):13586-13597. PubMed ID: 34665757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Path Following, Obstacle Detection and Obstacle Avoidance for Thrusted Underwater Snake Robots.
    Kelasidi E; Moe S; Pettersen KY; Kohl AM; Liljebäck P; Gravdahl JT
    Front Robot AI; 2019; 6():57. PubMed ID: 33501072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Range Sensor-Based Efficient Obstacle Avoidance through Selective Decision-Making.
    Shim Y; Kim GW
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autonomous Shepherding Behaviors of Multiple Target Steering Robots.
    Lee W; Kim D
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Heading Weight Function: A Novel LiDAR-Based Local Planner for Nonholonomic Mobile Robots.
    Harik EHC; Korsaeth A
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31430970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decentralized Control for Swarm Robots That Can Effectively Execute Spatially Distributed Tasks.
    Kano T; Naito E; Aoshima T; Ishiguro A
    Artif Life; 2020; 26(2):242-259. PubMed ID: 32271634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.