These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34206783)
1. Rice Seed Purity Identification Technology Using Hyperspectral Image with LASSO Logistic Regression Model. Liu W; Zeng S; Wu G; Li H; Chen F Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206783 [TBL] [Abstract][Full Text] [Related]
2. [Study on method of maize hybrid purity identification based on hyperspectral image technology]. Jia SQ; Liu Z; Li SM; Li L; Ma Q; Zhang XD; Zhu DH; Yan YL; An D Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Oct; 33(10):2847-52. PubMed ID: 24409748 [TBL] [Abstract][Full Text] [Related]
3. Prediction of Sweet Corn Seed Germination Based on Hyperspectral Image Technology and Multivariate Data Regression. Cui H; Cheng Z; Li P; Miao A Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842673 [TBL] [Abstract][Full Text] [Related]
4. A Deep Learning Framework for Processing and Classification of Hyperspectral Rice Seed Images Grown under High Day and Night Temperatures. Díaz-Martínez V; Orozco-Sandoval J; Manian V; Dhatt BK; Walia H Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177572 [TBL] [Abstract][Full Text] [Related]
5. Recognition of maize seed varieties based on hyperspectral imaging technology and integrated learning algorithms. Yang H; Wang C; Zhang H; Zhou Y; Luo B PeerJ Comput Sci; 2023; 9():e1354. PubMed ID: 37346683 [TBL] [Abstract][Full Text] [Related]
6. Application of Joint Skewness Algorithm to Select Optimal Wavelengths of Hyperspectral Image for Maize Seed Classification YANG Sai, ZHU Qi-bing*, HUANG Min. Yang S; Zhu QB; Huang M Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):990-6. PubMed ID: 30160845 [TBL] [Abstract][Full Text] [Related]
7. Detection of seed purity of hybrid wheat using reflectance and transmittance hyperspectral imaging technology. Zhang H; Hou Q; Luo B; Tu K; Zhao C; Sun Q Front Plant Sci; 2022; 13():1015891. PubMed ID: 36247557 [TBL] [Abstract][Full Text] [Related]
8. A study on water quality parameters estimation for urban rivers based on ground hyperspectral remote sensing technology. Hou Y; Zhang A; Lv R; Zhao S; Ma J; Zhang H; Li Z Environ Sci Pollut Res Int; 2022 Sep; 29(42):63640-63654. PubMed ID: 35460477 [TBL] [Abstract][Full Text] [Related]
9. Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds. Zhang L; Sun H; Rao Z; Ji H Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117973. PubMed ID: 31887678 [TBL] [Abstract][Full Text] [Related]
10. Identification of Rice Seed Varieties Based on Near-Infrared Hyperspectral Imaging Technology Combined with Deep Learning. Jin B; Zhang C; Jia L; Tang Q; Gao L; Zhao G; Qi H ACS Omega; 2022 Feb; 7(6):4735-4749. PubMed ID: 35187294 [TBL] [Abstract][Full Text] [Related]
11. [Maize seed identification using hyperspectral imaging and SVDD algorithm]. Zhu QB; Feng ZL; Huang M; Zhu X Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Feb; 33(2):517-21. PubMed ID: 23697145 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the vigor of rice seeds by near-infrared hyperspectral imaging combined with transfer learning. Yang Y; Chen J; He Y; Liu F; Feng X; Zhang J RSC Adv; 2020 Dec; 10(72):44149-44158. PubMed ID: 35517156 [TBL] [Abstract][Full Text] [Related]
13. HyperSeed: An End-to-End Method to Process Hyperspectral Images of Seeds. Gao T; Chandran AKN; Paul P; Walia H; Yu H Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960287 [TBL] [Abstract][Full Text] [Related]
14. [Study on Visual Identification of Corn Seeds Based on Hyperspectral Imaging Technology]. Wu X; Zhang WZ; Lu JF; Qiu ZJ; He Y Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):511-4. PubMed ID: 27209759 [TBL] [Abstract][Full Text] [Related]
15. Detection of peanut seed vigor based on hyperspectral imaging and chemometrics. Zou Z; Chen J; Wu W; Luo J; Long T; Wu Q; Wang Q; Zhen J; Zhao Y; Wang Y; Chen Y; Zhou M; Xu L Front Plant Sci; 2023; 14():1127108. PubMed ID: 36923124 [TBL] [Abstract][Full Text] [Related]
16. [Study on Identification of Immature Corn Seed Using Hyperspectral Imaging]. Yang XL; You ZH; Cheng F Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):4028-33. PubMed ID: 30243269 [TBL] [Abstract][Full Text] [Related]
17. Rapid and accurate identification of bakanae pathogens carried by rice seeds based on hyperspectral imaging and deep transfer learning. Wu N; Weng S; Xiao Q; Jiang H; Zhao Y; He Y Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 311():123889. PubMed ID: 38340442 [TBL] [Abstract][Full Text] [Related]
18. The Classification of Rice Blast Resistant Seed Based on Ranman Spectroscopy and SVM. He Y; Zhang W; Ma Y; Li J; Ma B Molecules; 2022 Jun; 27(13):. PubMed ID: 35807337 [TBL] [Abstract][Full Text] [Related]
19. Hyperspectral prediction of sugarbeet seed germination based on gauss kernel SVM. Yang J; Sun L; Xing W; Feng G; Bai H; Wang J Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119585. PubMed ID: 33662700 [TBL] [Abstract][Full Text] [Related]
20. Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis. Kong W; Zhang C; Liu F; Nie P; He Y Sensors (Basel); 2013 Jul; 13(7):8916-27. PubMed ID: 23857260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]