These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34206835)

  • 1. Effect of pH on Effective Slip Length and Surface Charge at Solid-Oil Interfaces of Roughness-Induced Surfaces.
    Tian P; Li Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34206835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids.
    Li Y; Bhushan B
    Soft Matter; 2015 Oct; 11(38):7680-95. PubMed ID: 26303742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boundary slip of superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized water, hexadecane, and ethylene glycol.
    Jing D; Bhushan B
    Langmuir; 2013 Nov; 29(47):14691-700. PubMed ID: 24168076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of surface charge density and its effect on boundary slip.
    Jing D; Bhushan B
    Langmuir; 2013 Jun; 29(23):6953-63. PubMed ID: 23683055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol.
    Li Y; Pan Y; Zhao X
    Beilstein J Nanotechnol; 2017; 8():2504-2514. PubMed ID: 29259865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.
    Pan Y; Bhushan B; Zhao X
    Beilstein J Nanotechnol; 2014; 5():1042-65. PubMed ID: 25161839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Boundary Slip Induced by Surface Roughness and Their Coupled Effect on Convective Heat Transfer of Liquid Flow.
    Pan Y; Jing D; Zhang H; Zhao X
    Entropy (Basel); 2018 May; 20(5):. PubMed ID: 33265424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of surface charge on boundary slip in fluid flow.
    Pan Y; Bhushan B
    J Colloid Interface Sci; 2013 Feb; 392():117-121. PubMed ID: 23164192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface charge-dependent hydrodynamic properties of an electroosmotic slip flow.
    Rezaei M; Azimian AR; Pishevar AR
    Phys Chem Chem Phys; 2018 Dec; 20(48):30365-30375. PubMed ID: 30489580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels.
    Gao W; Zhang X; Han X; Shen C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slip length and structure of liquid water flowing past atomistic smooth charged walls.
    Geng X; Yu M; Zhang W; Liu Q; Yu X; Lu Y
    Sci Rep; 2019 Dec; 9(1):18957. PubMed ID: 31831805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.
    Bhushan B; Wang Y; Maali A
    Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slip length of confined liquid with small roughness of solid-liquid interfaces.
    Wan L; Huang Y
    Phys Rev E; 2017 Apr; 95(4-1):043107. PubMed ID: 28505736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AFM characterization of nanobubble formation and slip condition in oxygenated and electrokinetically altered fluids.
    Bhushan B; Pan Y; Daniels S
    J Colloid Interface Sci; 2013 Feb; 392():105-116. PubMed ID: 23123096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow.
    Galea TM; Attard P
    Langmuir; 2004 Apr; 20(8):3477-82. PubMed ID: 15875885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large Effective Slip on Lubricated Surfaces Measured with Colloidal Probe AFM.
    Scarratt LRJ; Zhu L; Neto C
    Langmuir; 2020 Jun; 36(21):6033-6040. PubMed ID: 32431146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of no-slip and slip boundary conditions in confined Newtonian fluids using atomic force microscopy.
    Henry CL; Craig VS
    Phys Chem Chem Phys; 2009 Nov; 11(41):9514-21. PubMed ID: 19830336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of boundary slip and surface charge on the pressure-driven flow.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2013 Feb; 392():15-26. PubMed ID: 23137902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations.
    Priezjev NV; Darhuber AA; Troian SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041608. PubMed ID: 15903683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.