These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34206835)

  • 21. Boundary flow on end-grafted PEG brushes.
    Charrault E; Lee T; Easton CD; Neto C
    Soft Matter; 2016 Feb; 12(6):1906-14. PubMed ID: 26700583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature-dependent slip length for water and electrolyte solution.
    Li H; Xu Z; Ma M
    J Colloid Interface Sci; 2023 Apr; 636():512-517. PubMed ID: 36652826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review on slip boundary conditions at the nanoscale: recent development and applications.
    Wang R; Chai J; Luo B; Liu X; Zhang J; Wu M; Wei M; Ma Z
    Beilstein J Nanotechnol; 2021; 12():1237-1251. PubMed ID: 34868800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length.
    Voronov RS; Papavassiliou DV; Lee LL
    J Chem Phys; 2006 May; 124(20):204701. PubMed ID: 16774358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Viscosity effects on hydrodynamic drainage force measurements involving deformable bodies.
    Dagastine RR; Webber GB; Manica R; Stevens GW; Grieser F; Chan DY
    Langmuir; 2010 Jul; 26(14):11921-7. PubMed ID: 20578751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface roughness and effective stick-slip motion.
    Ponomarev IV; Meyerovich AE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026302. PubMed ID: 12636795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence of the no-slip boundary condition of water flow between hydrophilic surfaces using atomic force microscopy.
    Maali A; Wang Y; Bhushan B
    Langmuir; 2009 Oct; 25(20):12002-5. PubMed ID: 19821617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrodynamic resistance of close-approached slip surfaces with a nanoasperity or an entrapped nanobubble.
    Fan TH; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066306. PubMed ID: 16486058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal slip for liquids at rough solid surfaces.
    Zhang C; Chen Y; Peterson GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062407. PubMed ID: 25019794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Liquid-Solid Slip on Charged Walls: The Dramatic Impact of Charge Distribution.
    Xie Y; Fu L; Niehaus T; Joly L
    Phys Rev Lett; 2020 Jul; 125(1):014501. PubMed ID: 32678629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of surface charge and boundary slip on time-periodic pressure-driven flow and electrokinetic energy conversion in a nanotube.
    Buren M; Jian Y; Zhao Y; Chang L; Liu Q
    Beilstein J Nanotechnol; 2019; 10():1628-1635. PubMed ID: 31467824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of the Relationship between Boundary Slip and Nanobubbles on a Smooth Hydrophobic Surface.
    Li D; Jing D; Pan Y; Bhushan B; Zhao X
    Langmuir; 2016 Nov; 32(43):11287-11294. PubMed ID: 27684436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wetting, roughness and flow boundary conditions.
    Vinogradova OI; Belyaev AV
    J Phys Condens Matter; 2011 May; 23(18):184104. PubMed ID: 21508475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of surface roughness on rate-dependent slip in simple fluids.
    Priezjev NV
    J Chem Phys; 2007 Oct; 127(14):144708. PubMed ID: 17935424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Force-amplified, single-sided diffused-interface immersed boundary kernel for correct local velocity gradient computation and accurate no-slip boundary enforcement.
    Peng C; Wang LP
    Phys Rev E; 2020 May; 101(5-1):053305. PubMed ID: 32575257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracting local surface charges and charge regulation behavior from atomic force microscopy measurements at heterogeneous solid-electrolyte interfaces.
    Zhao C; Ebeling D; Siretanu I; van den Ende D; Mugele F
    Nanoscale; 2015 Oct; 7(39):16298-311. PubMed ID: 26377347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of Navier Slip on Individual Nanoparticles in Liquid.
    Collis JF; Olcum S; Chakraborty D; Manalis SR; Sader JE
    Nano Lett; 2021 Jun; 21(12):4959-4965. PubMed ID: 34110825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Slip-length measurement of confined air flow using dynamic atomic force microscopy.
    Maali A; Bhushan B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):027302. PubMed ID: 18850978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.