These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34207026)

  • 21. Development of a systematic method to assess similarity between nanomaterials for human hazard evaluation purposes - lessons learnt.
    Park MV; Catalán J; Ferraz N; Cabellos J; Vanhauten R; Vázquez-Campos S; Janer G
    Nanotoxicology; 2018 Sep; 12(7):652-676. PubMed ID: 29732939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal-Organic Framework Derived Nanozymes in Biomedicine.
    Wang D; Jana D; Zhao Y
    Acc Chem Res; 2020 Jul; 53(7):1389-1400. PubMed ID: 32597637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advanced bioactive nanomaterials for diagnosis and treatment of major chronic diseases.
    Liu Y; Yi Y; Zhong C; Ma Z; Wang H; Dong X; Yu F; Li J; Chen Q; Lin C; Li X
    Front Mol Biosci; 2023; 10():1121429. PubMed ID: 36776741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NanoSafe III: A User Friendly Safety Management System for Nanomaterials in Laboratories and Small Facilities.
    Buitrago E; Novello AM; Fink A; Riediker M; Rothen-Rutishauser B; Meyer T
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives.
    Navya PN; Daima HK
    Nano Converg; 2016; 3(1):1. PubMed ID: 28191411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nano-bio effects: interaction of nanomaterials with cells.
    Cheng LC; Jiang X; Wang J; Chen C; Liu RS
    Nanoscale; 2013 May; 5(9):3547-69. PubMed ID: 23532468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology.
    Chen C; Li YF; Qu Y; Chai Z; Zhao Y
    Chem Soc Rev; 2013 Nov; 42(21):8266-303. PubMed ID: 23868609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?
    Chen M; Zeng G; Xu P; Lai C; Tang L
    Trends Biochem Sci; 2017 Nov; 42(11):914-930. PubMed ID: 28917970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Adverse effects of nanomaterials on biological defense mechanisms].
    Higashisaka K
    Yakugaku Zasshi; 2014; 134(10):1043-8. PubMed ID: 25274214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Role of Nanomaterials in Modulating the Structure and Function of Biomimetic Catalysts.
    Huang Y; Yu D; Qiu Y; Chu L; Lin Y
    Front Chem; 2020; 8():764. PubMed ID: 33134257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding the Nano-Bio Interactions and the Corresponding Biological Responses.
    Tian X; Chong Y; Ge C
    Front Chem; 2020; 8():446. PubMed ID: 32587847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Big Data in a Nano World: A Review on Computational, Data-Driven Design of Nanomaterials Structures, Properties, and Synthesis.
    Yang RX; McCandler CA; Andriuc O; Siron M; Woods-Robinson R; Horton MK; Persson KA
    ACS Nano; 2022 Dec; 16(12):19873-19891. PubMed ID: 36378904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transformation of Metal-Organic Frameworks/Coordination Polymers into Functional Nanostructured Materials: Experimental Approaches Based on Mechanistic Insights.
    Lee KJ; Lee JH; Jeoung S; Moon HR
    Acc Chem Res; 2017 Nov; 50(11):2684-2692. PubMed ID: 28990760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the possibilities and limitations of a nanomaterials genome.
    Qian C; Siler T; Ozin GA
    Small; 2015 Jan; 11(1):64-9. PubMed ID: 25244158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Nano-Intestine Interaction: Understanding the Location-Oriented Effects of Engineered Nanomaterials in the Intestine.
    Cui X; Bao L; Wang X; Chen C
    Small; 2020 May; 16(21):e1907665. PubMed ID: 32347646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs.
    Holsapple MP; Farland WH; Landry TD; Monteiro-Riviere NA; Carter JM; Walker NJ; Thomas KV
    Toxicol Sci; 2005 Nov; 88(1):12-7. PubMed ID: 16120754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping.
    Landsiedel R; Ma-Hock L; Wiench K; Wohlleben W; Sauer UG
    J Nanopart Res; 2017; 19(5):171. PubMed ID: 28553159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction.
    Chen R; Riviere JE
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 May; 9(3):. PubMed ID: 27863136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanomedicine for implants: a review of studies and necessary experimental tools.
    Liu H; Webster TJ
    Biomaterials; 2007 Jan; 28(2):354-69. PubMed ID: 21898921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward the development of decision supporting tools that can be used for safe production and use of nanomaterials.
    Som C; Nowack B; Krug HF; Wick P
    Acc Chem Res; 2013 Mar; 46(3):863-72. PubMed ID: 23110540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.